【題目】給出下列五個(gè)命題:①“若,則”是假命題;②從正方體的面對(duì)角線(xiàn)中任取兩條作為一對(duì),其中所成角為的有48對(duì);③“ ”是方程表示焦點(diǎn)在軸上的雙曲線(xiàn)的充分不必要條件;④點(diǎn)是曲線(xiàn), )上的動(dòng)點(diǎn),且滿(mǎn)足,則的取值范圍是;⑤若隨機(jī)變量服從正態(tài)分布,且,則.其中正確命題的序號(hào)是__________(請(qǐng)把正確命題的序號(hào)填在橫線(xiàn)上).

【答案】②④⑤

【解析】“若,則”的逆否命題為:“若,則”為真,故“若,則”為真命題,故①錯(cuò)誤;正方體的面對(duì)角線(xiàn)共有條,兩條為一對(duì),共有條,同一面上的對(duì)角線(xiàn)不滿(mǎn)足題意,對(duì)面的面對(duì)角線(xiàn)也不滿(mǎn)足題意,一組平行平面共有對(duì)不滿(mǎn)足題意的直線(xiàn)對(duì)數(shù),不滿(mǎn)足題意的共有,從正方體六個(gè)面的對(duì)角線(xiàn)中任取兩條作為一對(duì).其中所成的角為的共有,故②正確;若,則,故方程表示焦點(diǎn)在軸上的雙曲線(xiàn),若方程表示焦點(diǎn)在軸上的雙曲線(xiàn),則,得,故“”是方程表示焦點(diǎn)在軸上的雙曲線(xiàn)的充要條件,即③不正確;由, ),分類(lèi)討論:當(dāng)時(shí),化為;當(dāng), 時(shí),化為;當(dāng), 時(shí),化為;當(dāng), 時(shí),化為畫(huà)出圖象:其軌跡為四邊形,其中, , , ,變形為 ,上式表示點(diǎn), 與圖象上的點(diǎn)的距離之和,∴,化為,
,其取值范圍為,故④正確;隨機(jī)變量服從正態(tài)分布,∵ ,∴關(guān)于對(duì)稱(chēng),∴,∴,∴,故⑤正確;故答案為②④⑤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱中,四邊形是菱形,,二面角, .

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中取一個(gè)容量為n的樣本;如果采用系統(tǒng)抽樣和分層抽樣方法抽取,無(wú)須剔除個(gè)體;如果樣本容量增加1個(gè),則在采用系統(tǒng)抽樣時(shí)需要在總體中先剔除一個(gè)個(gè)體,則n的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)結(jié)論:
①若α、β為第一象限角,且α>β,則sinα>sinβ
②函數(shù)y=|sinx|與y=|tanx|的最小正周期相同
③函數(shù)f(x)=sin(x+ )在[﹣ ]上是增函數(shù);
④若函數(shù)f(x)=asinx﹣bcosx的圖象的一條對(duì)稱(chēng)軸為直線(xiàn)x= ,則a+b=0.
其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 )的離心率為, 、分別是它的左、右焦點(diǎn),且存在直線(xiàn),使、關(guān)于的對(duì)稱(chēng)點(diǎn)恰好是圓 )的一條直徑的兩個(gè)端點(diǎn).

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)直線(xiàn)與拋物線(xiàn))相交于、兩點(diǎn),射線(xiàn)、與橢圓分別相交于點(diǎn)、.試探究:是否存在數(shù)集,當(dāng)且僅當(dāng)時(shí),總存在,使點(diǎn)在以線(xiàn)段為直徑的圓內(nèi)?若存在,求出數(shù)集;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱的底面是邊長(zhǎng)為2的正三角形且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是, 的中點(diǎn).

(1)求證: 平面;

(2)求二面角的大。

(3)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答
(1)已知tanα=3,求 的值;
(2)已知α為第二象限角,化簡(jiǎn)cosα +sinα

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)A(x1 , f(x1)),B(x2 , f(x2))是函數(shù)f(x)=2sin(ωx+φ) 圖象上的任意兩點(diǎn),且角φ的終邊經(jīng)過(guò)點(diǎn) ,若|f(x1)﹣f(x2)|=4時(shí),|x1﹣x2|的最小值為
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng) 時(shí),不等式mf(x)+2m≥f(x)恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,幾何體是四棱錐,為正三角形,.

(1)求證:

(2)若,M為線(xiàn)段AE的中點(diǎn),求證:平面.

查看答案和解析>>

同步練習(xí)冊(cè)答案