【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓C:(a>b>0)經(jīng)過(guò)點(diǎn)(﹣2,0)和,橢圓C上三點(diǎn)A,M,B與原點(diǎn)O構(gòu)成一個(gè)平行四邊形AMBO.
(1)求橢圓C的方程;
(2)若點(diǎn)B是橢圓C左頂點(diǎn),求點(diǎn)M的坐標(biāo);
(3)若A,M,B,O四點(diǎn)共圓,求直線AB的斜率.
【答案】(1)+y2=1;(2)M(-1,±);(3)±
【解析】
(1)將點(diǎn)和代入橢圓+=1求解即可.
(2)根據(jù)平行四邊形AMBO可知AM∥BO,且AM=BO=2.再設(shè)點(diǎn)M(x0,y0),則A(x0+2,y0),代入橢圓C求解即可.
(3) 因?yàn)?/span>A,M,B,O四點(diǎn)共圓,所以平行四邊形AMBO是矩形,且OA⊥OB,再聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理代入·=x1x2+y1y2=0求解即可.
(1)因?yàn)闄E圓+=1(a>b>0)過(guò)點(diǎn)和,
所以a=2,+=1,解得b2=1,所以橢圓C的方程為+y2=1.
(2)因?yàn)?/span>B為左頂點(diǎn),所以B (-2,0).
因?yàn)樗倪呅?/span>AMBO為平行四邊形,所以AM∥BO,且AM=BO=2.
設(shè)點(diǎn)M(x0,y0),則A(x0+2,y0).
因?yàn)辄c(diǎn)M,A在橢圓C上,所以解得所以M(-1,±).
(3)因?yàn)橹本AB的斜率存在,所以設(shè)直線AB的方程為y=kx+m,A(x1,y1),B(x2,y2).
由消去y,得(4k2+1)x2+8kmx+4m2-4=0,
則有x1+x2=,x1x2=.
因?yàn)槠叫兴倪呅?/span>AMBO,所以=+=(x1+x2,y1+y2).
因?yàn)?/span>x1+x2=,所以y1+y2=k(x1+x2)+2m=k·+2m=,所以M(,).
因?yàn)辄c(diǎn)M在橢圓C上,所以將點(diǎn)M的坐標(biāo)代入橢圓C的方程,化得4m2=4k2+1.①
因?yàn)?/span>A,M,B,O四點(diǎn)共圓,所以平行四邊形AMBO是矩形,且OA⊥OB,
所以·=x1x2+y1y2=0.
因?yàn)?/span>y1y2=(kx1+m)(kx1+m)=k2x1x2+km(x1+x2)+m2=,
所以x1x2+y1y2=+=0,化得5m2=4k2+4.②
由①②解得k2=,m2=3,此時(shí)△>0,因此k=±.
所以所求直線AB的斜率為±.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時(shí),試討論的單調(diào)性;
(2)對(duì)任意時(shí),都有成立,試求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)若在曲線上的一點(diǎn)的切線方程為軸,求此時(shí)的值;
(Ⅱ)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中是自然對(duì)數(shù)的底數(shù))).
(1)若是函數(shù)的極值點(diǎn),求實(shí)數(shù)的值并討論的單調(diào)性;
(2)若,函數(shù)有兩個(gè)零點(diǎn),,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的焦距為2,過(guò)右焦點(diǎn)和短軸一個(gè)端點(diǎn)的直線的斜率為,為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)斜率為的直線與橢圓相交于兩點(diǎn),記面積的最大值為,證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖(如圖①)、90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖(如圖②),則下列結(jié)論中不一定正確的是( )
注:90后指1990年及以后出生,80后指1980~1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的20%
C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解某高校全校學(xué)生的閱讀情況,隨機(jī)調(diào)查了200名學(xué)生每周閱讀時(shí)間(單位:小時(shí))并繪制如圖所示的頻率分布直方圖.
(1)求這200名學(xué)生每周閱讀時(shí)間的樣本平均數(shù)和中位數(shù)(的值精確到0.01);
(2)為查找影響學(xué)生閱讀時(shí)間的因素,學(xué)校團(tuán)委決定從每周閱讀時(shí)間為,的學(xué)生中抽取9名參加座談會(huì).你認(rèn)為9個(gè)名額應(yīng)該怎么分配?并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且x=0是f(x)的極值點(diǎn).
(1)求f(x)的最小值;
(2)是否存在實(shí)數(shù)b,使得關(guān)于x的不等式ex<bx+f(x)在(0,+∞)上恒成立?若存在,求出b的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】七巧板是中國(guó)古代勞動(dòng)人民的發(fā)明,其歷史至少可以追溯到公元前一世紀(jì),后清陸以湉《冷廬雜識(shí)》卷一中寫道“近又有七巧圖,其式五,其數(shù)七,其變化之式多至千余”在18世紀(jì),七巧板流傳到了國(guó)外,被譽(yù)為“東方魔板”,至今英國(guó)劍橋大學(xué)的圖書館里還珍藏著一部《七巧新譜》.完整圖案為一正方形(如圖):五塊等腰直角三角形、一塊正方形和一塊平行四邊形,如果在此正方形中隨機(jī)取一點(diǎn),那么此點(diǎn)取自陰影部分的概率是( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com