(本小題滿分12分)
如圖:在底面為直角梯形的四棱錐P-ABCD中,AD‖BC ,∠ABC=90°,PA⊥平面ABCD, PA="3," AD="2," AB=, BC=6.

(1)求證:BD⊥平面PAC
(2)求二面角B-PC-A的大小.
(1)要證明線面垂直,可以結合向量法或者幾何性質來證明,主要是對于線面判定的熟練的運用。
(2)

試題分析:解:(1)以為原點,射線分別為軸正向建立空間直角坐標系,則,,,
,

----------------------------------(6分)
(2)平面的法向量為
平面的法向量為  

-----------------------------(12分)
點評:解決該試題的關鍵是能利用線面垂直的判定定理以及二面角的定義法或者是向量法來求解角的大小,屬于基礎題。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

在三棱錐中,,是等腰直角三角形,,中點. 則與平面所成的角等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

為兩條直線,為兩個平面,下列四個命題中,正確的命題是(   )
A.若所成的角相等,則
B.若,,,則
C.若,,則
D.若,,,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(12分)如圖,在正方體ABCD-A1B1C1D1中,E、F、G分別是CB、CD、CC1的中點,

(1)求證:平面A B1D1∥平面EFG;
(2)求證:平面AA1C⊥面EFG.
(3)求異面直線AC與A1B所成的角

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
已知如圖(1),正三角形ABC的邊長為2a,CDAB邊上的高,E、F分別是ACBC邊上的點,且滿足,現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B,如圖(2).

(Ⅰ) 求二面角B-AC-D的大小;
(Ⅱ) 若異面直線ABDE所成角的余弦值為,求k的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,邊長為a的正方體ABCD-A1B1C1D1中,E為CC1的中點.

(1)求直線A1E與平面BDD1B1所成的角的正弦值
(2)求點E到平面A1DB的距離

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱錐中,平面平面,是正三角形,已知

(1) 設上的一點,求證:平面平面;
(2) 求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一個多面體的直觀圖和三視圖如圖所示,其中、分別是的中點,上的一動點,主視圖與俯視圖都為正方形。

⑴求證:;
⑵當時,在棱上確定一點,使得∥平面,并給出證明。
⑶求二面角的平面角余弦值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一邊BC在平面內,頂點A在平面外,已知,三角形所在平面與所成的二面角為,則直線所成角的正弦值為(      )
A.B.C.D.

查看答案和解析>>

同步練習冊答案