A. | (-∞,-1)∪(2,+∞) | B. | (-1,2) | C. | (-∞,-1) | D. | (-∞,-1]∪[2,+∞) |
分析 先求出命題“?x∈(-1,2),ax+2≠0”為假命題的充要條件,進而可得答案.
解答 解:若命題“?x∈(-1,2),ax+2≠0”為假命題,
則命題“?x∈(-1,2),ax+2=0”為真命題,
即ax+2=0的根x=-$\frac{2}{a}$∈(-1,2),
解得:a∈(-∞,-1)∪(2,+∞),
即命題“?x∈(-1,2),ax+2≠0”為假命題的充要條件為a∈(-∞,-1)∪(2,+∞),
由(2,+∞)?(-∞,-1)∪(2,+∞),
故a∈(2,+∞)就為命題“?x∈(-1,2),ax+2≠0”為假命題的一個充分不必要條件,
故選:C.
點評 本題考查充分必要條件的概念,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{17}}{3}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{13}$ | D. | $\frac{\sqrt{58}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {7} | B. | {5,7} | C. | {3,5,7} | D. | {x|6<x≤7} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}+1}{2}$ | B. | $\sqrt{6}$+1 | C. | $\sqrt{3}$+1 | D. | $\frac{\sqrt{3}+1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 如果a>b,那么$\frac{a}{c}$>$\frac{c}$ | B. | 如果ac<bc,那么a<b | ||
C. | 如果a>b,c>d,那么a-c>b-d | D. | 如果a>b,那么a-c>b-c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com