15.若?x∈(-1,2),ax+2≠0是假命題的一個充分不必要條件為a∈(  )
A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(-∞,-1)D.(-∞,-1]∪[2,+∞)

分析 先求出命題“?x∈(-1,2),ax+2≠0”為假命題的充要條件,進而可得答案.

解答 解:若命題“?x∈(-1,2),ax+2≠0”為假命題,
則命題“?x∈(-1,2),ax+2=0”為真命題,
即ax+2=0的根x=-$\frac{2}{a}$∈(-1,2),
解得:a∈(-∞,-1)∪(2,+∞),
即命題“?x∈(-1,2),ax+2≠0”為假命題的充要條件為a∈(-∞,-1)∪(2,+∞),
由(2,+∞)?(-∞,-1)∪(2,+∞),
故a∈(2,+∞)就為命題“?x∈(-1,2),ax+2≠0”為假命題的一個充分不必要條件,
故選:C.

點評 本題考查充分必要條件的概念,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

5.已知正三棱柱ABC-A′B′C′如圖所示,其中G是BC的中點,D,E分別在線段AG,A′C上運動,使得DE∥平面BCC′B′,CC′=2BC=4.
(1)求二面角A′-B′C-C′的余弦值;
(2)求線段DE的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.設實數(shù)x,y滿足x2=4y,則$\sqrt{{{({x-3})}^2}+{{({y-1})}^2}}+y$的最小值是2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.一奶制品加工廠以牛奶為原料分別在甲、乙兩類設備上加工生產(chǎn)A、B兩種奶制品,如用甲類設備加工一桶牛奶,需耗電12千瓦時,可得3千克A制品;如用乙類設備加工一桶牛奶,需耗電8千瓦時,可得4千克B制品.根據(jù)市場需求,生產(chǎn)的A、B兩種奶制品能全部售出,每千克A獲利a元,每千克B獲利b元.現(xiàn)在加工廠每天最多能得到50桶牛奶,每天兩類設備工作耗電的總和不得超過480千瓦時,并且甲類設備每天至多能加工102千克A制品,乙類設備的加工能力沒有限制.其生產(chǎn)方案是:每天用x桶牛奶生產(chǎn)A制品,用y桶牛奶生產(chǎn)B制品(為了使問題研究簡化,x,y可以不為整數(shù)).
(Ⅰ)若a=24,b=16,試為工廠制定一個最佳生產(chǎn)方案(記此最佳生產(chǎn)方案為F0),即x,y分別為何值時,使工廠每天的獲利最大,并求出該最大值;
(Ⅱ) 隨著季節(jié)的變換和市場的變化,以及對原配方的改進,市場價格也發(fā)生變化,獲利也隨市場波動.若a=24(1+4λ),b=16(1+5λ-5λ2)(這里0<λ<1),其它條件不變,試求λ的取值范圍,使工廠當且僅當采取(Ⅰ)中的生產(chǎn)方案F0時當天獲利才能最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設F1、F2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,過點F2的直線交雙曲線右支于A、B兩點.若AF2⊥AF1,且|BF2|=2|AF1|,則雙曲線的離心率為(  )
A.$\frac{\sqrt{17}}{3}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{13}$D.$\frac{\sqrt{58}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合P={1,3,5,7},Q={x|2x-1>11},則P∩Q等于( 。
A.{7}B.{5,7}C.{3,5,7}D.{x|6<x≤7}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知點P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右支上一點,F(xiàn)1,F(xiàn)2為雙曲線的左、右焦點,使($\overrightarrow{OP}$+$\overrightarrow{O{F}_{2}}$)($\overrightarrow{OP}$-$\overrightarrow{O{F}_{2}}$)=0(O為坐標原點),且|$\overrightarrow{P{F}_{1}}$|=$\sqrt{3}$|$\overrightarrow{P{F}_{2}}$|,則雙曲線離心率為( 。
A.$\frac{\sqrt{3}+1}{2}$B.$\sqrt{6}$+1C.$\sqrt{3}$+1D.$\frac{\sqrt{3}+1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.下列各命題是真命題的是( 。
A.如果a>b,那么$\frac{a}{c}$>$\frac{c}$B.如果ac<bc,那么a<b
C.如果a>b,c>d,那么a-c>b-dD.如果a>b,那么a-c>b-c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知數(shù)列{an}的通項公式an=n2-2n-8(n∈N*),則a4等于( 。
A.1B.2C.0D.3

查看答案和解析>>

同步練習冊答案