分析 拋物線的準(zhǔn)線方程為y=-1,$\sqrt{{{({x-3})}^2}+{{({y-1})}^2}}+y$+1-1最小值是(3,1)與焦點(0,1)的距離減去1,可得結(jié)論.
解答 解:拋物線的準(zhǔn)線方程為y=-1,$\sqrt{{{({x-3})}^2}+{{({y-1})}^2}}+y$+1-1最小值是(3,1)與焦點(0,1)的距離減去1,
即$\sqrt{{{({x-3})}^2}+{{({y-1})}^2}}+y$的最小值是3-1=2,
故答案為2.
點評 本題考查拋物線的方程與性質(zhì),考查學(xué)生轉(zhuǎn)化問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (¬p)∧q | B. | p∧q | C. | p∨(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1)∪(2,+∞) | B. | (-1,2) | C. | (-∞,-1) | D. | (-∞,-1]∪[2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com