9.若函數(shù)滿足f(x)=x,把此時的實數(shù)x稱為函數(shù)y=f(x)的不動點.
(1)若函數(shù)y=xm-3的一個不動點是2,求m的值;
(2)若函數(shù)g(x)=x2+(a-4)x-3b是區(qū)間[b-a,b]上的偶函數(shù)
①求a、b的值,并求出這個函數(shù)的不動點;
②判斷函數(shù)F(x)=g(x+1)-g(x-1)的奇偶性.

分析 (1)利用不動點的定義,列出方程求解即可.
(2)①利用偶函數(shù)的定義求解a、b,不動點的定義求解不動點即可;
②寫出函數(shù)的解析式,利用函數(shù)的奇偶性定義判斷即可.

解答 解:(1)由不動點的定義可知:函數(shù)y=xm-3的一個不動點是2,
可得:2m-3=2,解得m=log25.
(2)若函數(shù)g(x)=x2+(a-4)x-3b是區(qū)間[b-a,b]上的偶函數(shù),
①可得:a-4=0,b-a=-b,解得a=4、b=2,由x2-6=x,可得x=-2,x=3∉[-2,2]舍去,
這個函數(shù)的不動點為x=-2;
②函數(shù)F(x)=g(x+1)-g(x-1)=(x+1)2-6-((x-1)2-6)=4x.
F(-x)=-4x=-F(x),
函數(shù)是奇函數(shù).

點評 本題考查函數(shù)與方程的應用,新定義的應用,考查轉化思想以及計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.求下列函數(shù)的定義域
(1)y=$\sqrt{2sinx-1}$
(2)y=$\sqrt{tanx-\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=lg(x+4)的定義域是(-4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.解下列不等式:
(1)2x2+x-1<0
(2)$\frac{x-1}{x-2}$<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.以正方形的一條邊的兩個端點為焦點,且過另外兩個頂點的橢圓離心率為(  )
A.$\sqrt{2}$-1B.$\sqrt{2}$C.$\frac{\sqrt{2}-1}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.Sn為正項等比數(shù)列{an}的前n項和,若S2是S4與-5的等差中項,則a5+a6的最小值為( 。
A.50B.40C.30D.20

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知直線l1:x-y=5,直線l2:x+2y=3,直線l1與l2的夾角的余弦值$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.在等比數(shù)列{an}中,a2=2,a6=8,則a9==±16$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=x(x-c)2在x=2處有極大值,則實數(shù)c的值為( 。
A.2B.4C.5D.6

查看答案和解析>>

同步練習冊答案