A. | 50 | B. | 40 | C. | 30 | D. | 20 |
分析 化簡可得(a2+a1)(q2-1)=5,從而可得q>1,a2+a1=$\frac{5}{{q}^{2}-1}$,從而化簡a5+a6=$\frac{5}{-(\frac{1}{{q}^{2}}-\frac{1}{2})^{2}+\frac{1}{4}}$,從而求最小值.
解答 解:∵S2是S4與-5的等差中項,
∴S4-5=2S2,
∴a4+a3-(a2+a1)=5,
∴(a2+a1)(q2-1)=5,
∴q>1,a2+a1=$\frac{5}{{q}^{2}-1}$,
故a5+a6=(a2+a1)q4
=$\frac{5}{{q}^{2}-1}$q4=$\frac{5}{\frac{1}{{q}^{2}}-\frac{1}{{q}^{4}}}$
=$\frac{5}{-(\frac{1}{{q}^{2}}-\frac{1}{2})^{2}+\frac{1}{4}}$,
故當q=$\sqrt{2}$時,有最小值為$\frac{5}{\frac{1}{4}}$=20,
故選:D.
點評 本題考查了等比數(shù)列與等差數(shù)列的性質的判斷與應用,同時考查了配方法的應用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{10}{3}$) | B. | (-∞,$\frac{10}{3}$] | C. | ($\frac{10}{3}$,+∞) | D. | (-∞,-$\frac{6}{5}$)∪(-$\frac{6}{5}$,$\frac{10}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | 2 | C. | 3 | D. | $\frac{11}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 最大值0,最小值-8 | B. | 最大值5,最小值-4 | ||
C. | 最大值5,最小值-3 | D. | 最大值2$\sqrt{2}$-1,最小值-3 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com