精英家教網 > 高中數學 > 題目詳情
7、已知圓C:x2+y2=4(x≥0,y≥0)與函數f(x)=log2x,g(x)=2x的圖象分別交于A(x1,y1),B(x2,y2),則x12+x22的值為(  )
分析:函數f(x)=log2x,g(x)=2x的圖象關于直線y=x對稱,從而可求.
解答:解:A(x1,y1),B(x2,y2)兩點關于直線y=x對稱,故 x1=y2,x2=y1,A點坐標為(x1,x2),而點A在圓C上,
即x12+x22=4.
故選C.
點評:本題主要考查互為反函數的圖象關于直線y=x對稱.屬于基礎題
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知圓C:x2+y2-6x-4y+8=0.以圓C與坐標軸的交點分別作為雙曲線的一個焦點和頂點,則適合上述條件雙曲線的標準方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(1)一個圓與x軸相切,圓心在直線3x-y=0上,且被直線x-y=0所截得的弦長為2
7
,求此圓方程.
(2)已知圓C:x2+y2=9,直線l:x-2y=0,求與圓C相切,且與直線l垂直的直線方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數.射線l與圓C相交于另一點B.
(1)當r=1時,試用k表示點B的坐標;
(2)當r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標平面上,橫、縱坐標都為有理數的點為有理點.我們知道,一個有理數可以表示為
qp
,其中p、q均為整數且p、q互質)
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數的雙曲線為“整勾股雙曲線”.
當0<k<1時,是否能構造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標、縱坐標和半徑r的數值構成?若能,請嘗試探索其構造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•瀘州一模)已知圓C:x2+y2=r2(r>0)與拋物線y2=40x的準線相切,若直線l:
x
a
y
b
=1
與圓C有公共點,且公共點都為整點(整點是指橫坐標.縱坐標都是整數的點),那么直線l共有(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C:x2+y2=4與直線L:x+y+a=0相切,則a=( 。

查看答案和解析>>

同步練習冊答案