已知函數(shù)的最小值為0,其中

(Ⅰ)求的值;

(Ⅱ)若對任意的成立,求實數(shù)的最小值;

(Ⅲ)證明).

【解析】(1)解: 的定義域為

,得

當(dāng)x變化時,的變化情況如下表:

x

-

0

+

極小值

因此,處取得最小值,故由題意,所以

(2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

,得

①當(dāng)時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

②當(dāng)時,,對于,,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

不合題意.

綜上,k的最小值為.

(3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

當(dāng)時,

                      

                      

在(2)中取,得

從而

所以有

     

     

     

     

      

綜上,,

 

【答案】

(1)      (2)   (3) 見解析

【考點定位】本小題主要考查導(dǎo)數(shù)的運算,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,不等式基礎(chǔ)知識.考查函數(shù)思想、分類討論思想.考查綜合分析和解決問題的能力.試題分為三問,題面比較簡單,給出的函數(shù)比較常規(guī),因此入手對于同學(xué)們來說沒有難度,第二問中,解含參數(shù)的不等式時,要注意題中參數(shù)的討論所有的限制條件,從而做到不重不漏;第三問中,證明不等式,應(yīng)借助于導(dǎo)數(shù)證不等式的方法進行.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足下列條件:
①當(dāng)x∈R時,函數(shù)的最小值為0,且f(-1+x)=f(-1-x)成立;
②當(dāng)x∈(0,5)時,都有x≤f(x)≤2|x-1|+1恒成立.求:
(1)f(1)的值;
(2)函數(shù)f(x)的解析式;
(3)求最大的實數(shù)m(m>1),使得存在t∈R,只要當(dāng)x∈[1,m]時,就有f(x+t)≤x成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知函數(shù)的最大值為0,最小值為-4,若a>0,求a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省珠海市高一(下)期末數(shù)學(xué)試卷B(解析版) 題型:解答題

已知函數(shù)的最小值為,最小正周期為16,且圖象經(jīng)過點(6,0)求這個函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年天津市高三第四次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)的最小值為0,其中

(1)求a的值

(2)若對任意的,有成立,求實數(shù)k的最小值

(3)證明

 

查看答案和解析>>

同步練習(xí)冊答案