選修4-1:幾何證明選講
如圖所示,PA為⊙O的切線,A為切點(diǎn),PBC是過(guò)點(diǎn)O的割線,PA=10,PB=5,∠BAC的平分線與BC和⊙O分別交于點(diǎn)D和E.
(Ⅰ)求證:
AB
AC
=
PA
PC
;
(Ⅱ)求AD•AE的值.
分析:( I)直接根據(jù)∠PAB=∠ACP以及∠P公用,得到△PAB∽△PCA,進(jìn)而求出結(jié)論;
( II)先根據(jù)切割線定理得到PA2=PB•PC;結(jié)合第一問(wèn)的結(jié)論以及勾股定理求出AC=6
5
,AB=3
5
;再結(jié)合條件得到△ACE∽△ADB,進(jìn)而求出結(jié)果.
解答:解:( I)∵PA為⊙O的切線,
∴∠PAB=∠ACP,…(1分)
又∠P公用,∴△PAB∽△PCA.…(2分)
AB
AC
=
PA
PC
.…(3分)
( II)∵PA為⊙O的切線,PBC是過(guò)點(diǎn)O的割線,
∴PA2=PB•PC.…(5分)
又∵PA=10,PB=5,∴PC=20,BC=15.…(6分)
由( I)知,
AB
AC
=
PA
PC
=
1
2
,
∵BC是⊙O的直徑,
∴∠CAB=90°.
∴AC2+AB2=BC2=225,
AC=6
5
,AB=3
5
 …(7分)
連接CE,則∠ABC=∠E,…(8分)
又∠CAE=∠EAB,
∴△ACE∽△ADB,
AB
AE
=
AD
AC
 …(9分)
AD•AE=AB•AC=3
5
×6
5
=90
.…(10分)
點(diǎn)評(píng):本題主要考查與圓有關(guān)的比例線段、相似三角形的判定及切線性質(zhì)的應(yīng)用.解決本題第一問(wèn)的關(guān)鍵在于先由切線PA得到∠PAB=∠ACP.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,HB=2.
(1)求DE的長(zhǎng);
(2)延長(zhǎng)ED到P,過(guò)P作圓O的切線,切點(diǎn)為C,若PC=2
5
,求PD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過(guò)點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對(duì)應(yīng)的一個(gè)特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過(guò)點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過(guò)圓上O的點(diǎn)C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長(zhǎng)BC到點(diǎn)D,使得CD=AC,連結(jié)AD交圓O于點(diǎn)E,連結(jié)BE與AC交于點(diǎn)F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案