【題目】給出下列四個命題: ①x0∈R,ln(x02+1)<0;
x>2,x2>2x;
α,β∈R,sin(α﹣β)=sin α﹣sin β;
④若q是¬p成立的必要不充分條件,則¬q是p成立的充分不必要條件.
其中真命題的個數(shù)為(
A.1
B.2
C.3
D.4

【答案】A
【解析】解:①x0∈R,ln(x02+1)<0不正確,由于x∈R,y=ln(x2+1)≥ln1=0,故①錯; ②x>2,x2>2x不正確,比如x=4,則x2=2x=16,故②錯;
α,β∈R,sin(α﹣β)=sin α﹣sin β不正確,比如α=60°,β=30°,
sin(α﹣β)=sin30°= ,sin α﹣sin β=sin60°﹣sin30°= ,顯然不等,
應為α,β∈R,sin(α﹣β)=sin αcosβ﹣cosαsin β,故③錯;
④若q是¬p成立的必要不充分條件,則p是¬q成立的必要不充分條件,
則¬q是p成立的充分不必要條件,故④正確.
其中真命題的個數(shù)為1.
故選:A.
【考點精析】掌握命題的真假判斷與應用是解答本題的根本,需要知道兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】口袋中裝有2個白球和nn≥2,n N*)個紅球.每次從袋中摸出2個球(每次摸球后把這2個球放回口袋中),若摸出的2個球顏色相同則為中獎,否則為不中獎.
(I)用含n的代數(shù)式表示1次摸球中獎的概率;
(Ⅱ)若n=3,求3次摸球中恰有1次中獎的概率;
(III)記3次摸球中恰有1次中獎的概率為fp),當fp)取得最大值時,求n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:函數(shù)

求函數(shù)的周期T與單調(diào)增區(qū)間.

函數(shù)的圖象有幾個公共交點.

設關于x的函數(shù)的最小值為,試確定滿足a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】王先生家住 A 小區(qū),他工作在 B 科技園區(qū),從家開車到公司上班路上有 L1 , L2 兩條路線(如圖),L1 路線上有 A1 , A2 , A3 三個路口,各路口遇到紅燈的概率均為 ;L2 路線上有 B1 , B2 兩個路.各路口遇到紅燈的概率依次為 , .若走 L1 路線,王先生最多遇到 1 次紅燈的概率為;若走 L2 路線,王先生遇到紅燈次數(shù) X 的數(shù)學期望為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋內(nèi)裝有6個球,每個球上都記有從16的一個號碼,設號碼為n的球重克,這些球等可能地從袋里取出(不受重量、號碼的影響).

(1)如果任意取出1個球,求其重量大于號碼數(shù)的概率;

(2)如果不放回地任意取出2個球,求它們重量相等的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中,分別是角A、B、C的對邊, ,且

(1)求角A的大小; (2)求的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小王、小張兩位同學玩投擲正四面體(每個面都為等邊三角形的正三棱錐)骰子(骰子質(zhì)地均勻,各面上的點數(shù)分別為)游戲,規(guī)則:小王現(xiàn)擲一枚骰子,向下的點數(shù)記為,小張后擲一枚骰子,向下的點數(shù)記為,

(1)在直角坐標系中,以為坐標的點共有幾個?試求點落在直線上的概率;

(2)規(guī)定:若,則小王贏,若,則小張贏,其他情況不分輸贏,試問這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知A,B,C為直角坐標系xOy中的三個定點

(Ⅰ)若點D為ABCD的第四個頂點,求||;

(Ⅱ)若點P在直線OC上,且·=4,求點P的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且對任意正整數(shù)n,都有3an=2Sn+3成立.
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3an , 求數(shù)列{ }的前n項和Tn

查看答案和解析>>

同步練習冊答案