拋物線的頂點在原點,焦點在y軸上,拋物線上一點P(m,-3)到焦點的距離為5,則拋物線的準線方程是


  1. A.
    y=4
  2. B.
    y=-4
  3. C.
    y=2
  4. D.
    y=-2
C
分析:根據(jù)P拋物線的頂點在原點,焦點在y軸上,可知拋物線開口向下,設拋物線的標準方程,根據(jù)拋物線的定義求得p,進而可得到拋物線方程,從而可求拋物線的準線方程.
解答:根據(jù)拋物線的頂點在原點,焦點在y軸上,可知拋物線開口向下,
設拋物線方程x2=-2py
根據(jù)拋物線的定義可知3+=5,
∴p=4;
∴拋物線方程為x2=-8y,
∴拋物線的準線方程是y=2
故選C.
點評:本題以拋物線的性質(zhì)為載體,考查拋物線的定義,解題的關(guān)鍵是利用定義,將拋物線上點P(m,-3)到焦點的距離轉(zhuǎn)化為點P到準線的距離.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

13、拋物線的頂點在原點,對稱軸是坐標軸,且焦點在直線x-y+4=0上,則此拋物線方程為
y2=-16x或x2=16y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設拋物線的頂點在原點,準線方程為x=-2,則拋物線的方程是( 。
A、y2=-8xB、y2=8xC、y2=-4xD、y2=4x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•江蘇一模)本題主要考查拋物線的標準方程、簡單的幾何性質(zhì)等基礎知識,考查運算求解、推理論證的能力.
如圖,在平面直角坐標系xOy,拋物線的頂點在原點,焦點為F(1,0).過拋物線在x軸上方的不同兩點A、B,作拋物線的切線AC、BD,與x軸分別交于C、D兩點,且AC與BD交于點M,直線AD與直線BC交于點N.
(1)求拋物線的標準方程;
(2)求證:MN⊥x軸;
(3)若直線MN與x軸的交點恰為F(1,0),求證:直線AB過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線的頂點在原點,對稱軸是坐標軸,且焦點在直線x-y+2=0上,則此拋物線方程為
y2=-8x或x2=8y
y2=-8x或x2=8y

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)實軸長為4
3
的橢圓的中心在原點,其焦點F1,,F(xiàn)2在x軸上.拋物線的頂點在原點O,對稱軸為y軸,兩曲線在第一象限內(nèi)相交于點A,且AF1⊥AF2,△AF1F2的面積為3.
(Ⅰ)求橢圓和拋物線的標準方程;
(Ⅱ)過點A作直線l分別與拋物線和橢圓交于B,C,若
AC
=2
AB
,求直線l的斜率k.

查看答案和解析>>

同步練習冊答案