分析 通過討論a的范圍,利用指數(shù)函數(shù)的性質(zhì),轉(zhuǎn)化不等式求解即可.
解答 解:當(dāng)a>1時(shí),a2x+7<a3x-2等價(jià)于2x+7<3x-2,∴x>9;
當(dāng)0<a<1時(shí),a2x+7<a3x-2等價(jià)于2x+7>3x-2.∴x<9.
綜上,當(dāng)a>1時(shí),不等式的解集為{x|x>9};
當(dāng)0<a<1時(shí),不等式的解集為{x|x<9}.
點(diǎn)評 本題考查指數(shù)不等式的解法,指數(shù)函數(shù)的單調(diào)性的應(yīng)用,考查分類討論思想以及轉(zhuǎn)化思想的應(yīng)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x與g(x)=($\sqrt{x}$)2 | B. | f(x)=x|x|與g(x)=$\left\{\begin{array}{l}{{x}^{2}(x>0)}\\{-{x}^{2}(x<0)}\end{array}\right.$ | ||
C. | f(x)=|x|與g(x)=$\root{3}{{x}^{3}}$ | D. | f(x)=$\frac{{x}^{2}-1}{x-1}$與g(t)=t+1(t≠1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $6+2\sqrt{2}+\sqrt{6}$ | B. | $6+2\sqrt{2}$ | C. | 3 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com