選修4-1:幾何證明選講
如圖,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,PA是過點(diǎn)A的直線,且∠PAC=∠ABC.
(Ⅰ) 求證:PA是⊙O的切線;
(Ⅱ)如果弦CD交AB于點(diǎn)E,AC=8,CE:ED=6:5,AE:EB=2:3,求sin∠BCE.

【答案】分析:(Ⅰ)由AB為直徑,知,,由此能證明PA為圓的切線.
(Ⅱ)設(shè)CE=6k,ED=5k,AE=2m,EB=3m,由AE•EB=CE•ED,得m=k,由△AEC∽△DEB,△CEB∽△AED,能求出AB=10,,由此能求出sin∠BCE.
解答:(Ⅰ)證明:∵AB為直徑,
,,

∴PA⊥AB,
∵AB為直徑,∴PA為圓的切線.…(4分)
(Ⅱ)解:CE=6k,ED=5k,AE=2m,EB=3m,
∵AE•EB=CE•ED,∴m=k,
∵△AEC∽△DEB
△CEB∽△AED
∴AB=10,
在直角三角形ADB中,,
∵∠BCE=∠BAD,∴.…(10分)
點(diǎn)評:本題考查與圓有關(guān)的比例線線段的應(yīng)用,解題時(shí)要認(rèn)真審題,注意相交弦定理和相似三角形性質(zhì)的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)選修4-1:幾何證明選講
如圖,圓O的直徑AB=10,弦DE⊥AB于點(diǎn)H,HB=2.
(1)求DE的長;
(2)延長ED到P,過P作圓O的切線,切點(diǎn)為C,若PC=2
5
,求PD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)A、選修4-1:幾何證明選講 
如圖,PA與⊙O相切于點(diǎn)A,D為PA的中點(diǎn),
過點(diǎn)D引割線交⊙O于B,C兩點(diǎn),求證:∠DPB=∠DCP.
B.選修4-2:矩陣與變換
已知矩陣M=
12
2x
的一個(gè)特征值為3,求另一個(gè)特征值及其對應(yīng)的一個(gè)特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,圓C的方程為ρ=2
2
sin(θ+
π
4
)
,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=t
y=1+2t
(t為參數(shù)),判斷直線l和圓C的位置關(guān)系.
D.選修4-5:不等式選講
求函數(shù)y=
1-x
+
4+2x
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-1:幾何證明選講
自圓O外一點(diǎn)P引圓的一條切線PA,切點(diǎn)為A,M為PA的中點(diǎn),過點(diǎn)M引圓O的割線交該圓于B、C兩點(diǎn),且∠BMP=100°,∠BPC=40°,求∠MPB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•徐州模擬)選修4-1:幾何證明選講
如圖,直線AB經(jīng)過圓上O的點(diǎn)C,并且OA=OB,CA=CB,圓O交于直線OB于E,D,連接EC,CD,若tan∠CED=
12
,圓O的半徑為3,求OA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•南京二模)選修4-1:幾何證明選講
如圖,圓O是等腰三角形ABC的外接圓,AB=AC,延長BC到點(diǎn)D,使得CD=AC,連結(jié)AD交圓O于點(diǎn)E,連結(jié)BE與AC交于點(diǎn)F,求證:AE2=EF•BE.

查看答案和解析>>

同步練習(xí)冊答案