若y=f(x)是定義在R上的函數(shù),且滿足:①f(x)是偶函數(shù);②f(x-1)是奇函數(shù),且當(dāng)0<x≤1時,f(x)=lgx,則方程f(x)=2012在區(qū)間(-6,10)內(nèi)的所有實數(shù)根之和為( )
A.8
B.12
C.16
D.24
【答案】
分析:由f(x)是偶函數(shù)說明函數(shù)圖象關(guān)于y軸對稱,再由f(x-1)是奇函數(shù)說明函數(shù)圖象關(guān)于點(-1,0)對稱,因此可以證明出函數(shù)的周期為4.畫出函數(shù)f(x)的圖象,只要找出函數(shù)f(x)的圖象與y=2012在區(qū)間(-6,10)內(nèi)交點的情況,就不難找到f(x)=2012在區(qū)間(-6,10)內(nèi)的所有實根之和了.
解答:解:由①知f(-x)=f(x),由②知f(-x-1)=-f(x-1),即函數(shù)圖象關(guān)于(-1,0)對稱;
由①②得:f(-x-2)=-f(x)=-f(-x)
∴f(x-2)=-f(x),∴f(x-4)=-f(x-2)-f(x)
∴函數(shù)f(x)的最小正周期為4
∵當(dāng)0<x≤1時,f(x)=lgx,∴函數(shù)f(x)在一個周期(-2,2)上的圖象如圖:
由圖象數(shù)形結(jié)合可知,當(dāng)x∈(-6,6)時,即三個連續(xù)周期上,方程f(x)=2012有6個關(guān)于y軸對稱的根,其和為0
當(dāng)x∈(6,10)時,方程f(x)=2012有2個關(guān)于x=8對稱的根,其和為2×8=16
故方程f(x)=2012在區(qū)間(-6,10)內(nèi)的所有實數(shù)根之和為0+16=16
故選C
點評:本題考查了函數(shù)與方程的綜合應(yīng)用以及函數(shù)圖象的對稱性與奇偶性等知識點,充分利用函數(shù)的奇偶性與周期性,數(shù)形結(jié)合是解決本題的關(guān)鍵,屬中檔題