【題目】為了解某中學(xué)學(xué)生對《中華人民共和國交通安全法》的了解情況,調(diào)查部門在該校進(jìn)行了一次問卷調(diào)查(共12道題),從該校學(xué)生中隨機(jī)抽取40人,統(tǒng)計(jì)了每人答對的題數(shù),將統(tǒng)計(jì)結(jié)果分成,,,,六組,得到如下頻率分布直方圖.

1)若答對一題得10分,未答對不得分,估計(jì)這40人的成績的平均分(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

2)若從答對題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人,求恰有1人答對題數(shù)在內(nèi)的概率.

【答案】179;(2

【解析】

1)首先根據(jù)頻率分布直方圖計(jì)算出答對題數(shù)的平均數(shù),由此求得成績的平均分的估計(jì)值.

2)利用列舉法,結(jié)合古典概型概率計(jì)算公式,計(jì)算出所求概率.

1)因?yàn)榇饘︻}數(shù)的平均數(shù)約為.

所以這40人的成績的平均分約為.

2)答對題數(shù)在內(nèi)的學(xué)生有人,記為,

答對題數(shù)在內(nèi)的學(xué)生有人,記為,.

從答對題數(shù)在內(nèi)的學(xué)生中隨機(jī)抽取2人的情況有,,,,,,共10種,

恰有1人答對題數(shù)在內(nèi)的情況有,,,,,共6種,

故所求概率.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項(xiàng)和為,已知.

1)令,求數(shù)列的通項(xiàng)公式;

2)若數(shù)列滿足:.

①求數(shù)列的通項(xiàng)公式;

②是否存在正整數(shù),使得成立?若存在,求出所有的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,B為AC的中點(diǎn),分別以AB,AC為直徑在AC的同側(cè)作半圓,M,N分別為兩半圓上的動(dòng)點(diǎn)不含端點(diǎn)A,B,,且,則的最大值為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種智能手機(jī)的投入成本是4500/部,當(dāng)手機(jī)售價(jià)為6000/部時(shí),月銷售量為臺(tái),市場分析的結(jié)果表明,如果手機(jī)的銷售價(jià)提高的百分率為,那么月銷售量減少的百分率為.記銷售價(jià)提高的百分率為時(shí),月利潤是.

1)寫出月利潤的函數(shù)關(guān)系式;

2)如何確定這種智能手機(jī)的銷售價(jià),使得該公司的月利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大明確把精準(zhǔn)脫貧作為決勝全面建成小康社會(huì)必須打好的三大攻堅(jiān)戰(zhàn)之一.為堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村脫貧,堅(jiān)持扶貧同扶智相結(jié)合,此幫扶單位考察了甲、乙兩種不同的農(nóng)產(chǎn)品加工生產(chǎn)方式,現(xiàn)對兩種生產(chǎn)方式的產(chǎn)品質(zhì)量進(jìn)行對比,其質(zhì)量按測試指標(biāo)可劃分為:指標(biāo)在區(qū)間的為優(yōu)等品;指標(biāo)在區(qū)間的為合格品,現(xiàn)分別從甲、乙兩種不同加工方式生產(chǎn)的農(nóng)產(chǎn)品中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測,測試指標(biāo)結(jié)果的頻數(shù)分布表如下:

甲種生產(chǎn)方式:

指標(biāo)區(qū)間

頻數(shù)

5

15

20

30

15

15

乙種生產(chǎn)方式:

指標(biāo)區(qū)間

頻數(shù)

5

15

20

30

20

10

(1)在用甲種方式生產(chǎn)的產(chǎn)品中,按合格品與優(yōu)等品用分層抽樣方式,隨機(jī)抽出5件產(chǎn)品,①求這5件產(chǎn)品中,優(yōu)等品和合格品各多少件;②再從這5件產(chǎn)品中,隨機(jī)抽出2件,求這2件中恰有1件是優(yōu)等品的概率;

(2)所加工生產(chǎn)的農(nóng)產(chǎn)品,若是優(yōu)等品每件可售55元,若是合格品每件可售25元.甲種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為15元,乙種生產(chǎn)方式每生產(chǎn)一件產(chǎn)品的成本為20元.用樣本估計(jì)總體比較在甲、乙兩種不同生產(chǎn)方式下,該扶貧單位要選擇哪種生產(chǎn)方式來幫助該扶貧村來脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),證明:函數(shù)有兩個(gè)零點(diǎn);

2)當(dāng)時(shí),求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校抽取了100名學(xué)生期中考試的英語和數(shù)學(xué)成績,已知成績都不低于100分,其中英語成績的頻率分布直方圖如圖所示,成績分組區(qū)間是,,.

1)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生英語成績的平均數(shù)和中位數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

2)若這100名學(xué)生數(shù)學(xué)成績分?jǐn)?shù)段的人數(shù)y的情況如下表所示:

分組區(qū)間

y

15

40

40

m

n

且區(qū)間內(nèi)英語人數(shù)與數(shù)學(xué)人數(shù)之比為,現(xiàn)從數(shù)學(xué)成績在的學(xué)生中隨機(jī)選取2人,求選出的2人中恰好有1人數(shù)學(xué)成績在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個(gè)焦點(diǎn)分別為,短軸的兩個(gè)端點(diǎn)分別為,點(diǎn)在橢圓上,且滿足,當(dāng)變化時(shí),給出下列三個(gè)命題:

①點(diǎn)的軌跡關(guān)于軸對稱;②的最小值為2;

③存在使得橢圓上滿足條件的點(diǎn)僅有兩個(gè),

其中,所有正確命題的序號是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓的中心在坐標(biāo)原點(diǎn),長軸均為且在軸上,短軸長分別為,過原點(diǎn)且不與軸重合的直線的四個(gè)交點(diǎn)按縱坐標(biāo)從大到小依次為,記的面積分別為.

1)當(dāng)直線軸重合時(shí),若,求的值;

2)當(dāng)變化時(shí),是否存在與坐標(biāo)軸不重合的直線,使得?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案