分析 (1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.
(2)利用正弦函數(shù)的定義域和值域,求得y=f(x)的取值范圍.
解答 解:(1)根據(jù)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R)的部分圖象,
可得A=1,$\frac{1}{4}$•$\frac{2π}{ω}$=$\frac{2π}{3}$-$\frac{π}{6}$,∴ω=1.
再根據(jù)五點(diǎn)法作圖可得1×$\frac{π}{6}$+φ=$\frac{π}{2}$,φ=$\frac{π}{3}$,∴函數(shù)f(x)=sin(x+$\frac{π}{3}$).
因此函數(shù)f(x)=sin(x+$\frac{π}{3}$).
(2)當(dāng)x∈[-π,-$\frac{π}{6}$]時(shí),x+$\frac{π}{3}$∈[-$\frac{2π}{3}$,$\frac{π}{6}$],故當(dāng)x+$\frac{π}{3}$=-$\frac{π}{2}$時(shí),函數(shù)f(x)取得最小值為-1;
當(dāng)x+$\frac{π}{3}$=$\frac{π}{6}$時(shí),函數(shù)f(x)取得最大值為$\frac{1}{2}$,即f(x)的范圍為[-1,$\frac{1}{2}$].
點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,正弦函數(shù)的定義域和值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x2 | B. | y=$\frac{1}{x}$ | C. | y=x | D. | y=$\sqrt{x}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{5}$ | C. | $\sqrt{7}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①②③ | B. | ②③④ | C. | ①③④ | D. | ①②④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,1),$\sqrt{3}$ | B. | (1,2),$\sqrt{3}$ | C. | (3,0),3 | D. | (-3,0),$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com