19.已知復(fù)數(shù)z=(2-i)(1+3i),其中i是虛數(shù)單位,則復(fù)數(shù)z在復(fù)平面上對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運算法則、幾何意義即可得出.

解答 解:復(fù)數(shù)z=(2-i)(1+3i)=5+5i,
復(fù)數(shù)z在復(fù)平面上對應(yīng)的點(5,5)位于第一象限.
故選:A.

點評 本題考查了復(fù)數(shù)的運算法則、幾何意義,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)集合 A={x|2<x<4},B={a<x<3a}.
(1)若A∩B≠∅,求實數(shù)a的范圍.
(2)若A∪B={x|2<x<6},求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.等差數(shù)列{an}的前n項和是Sn,且S5<S6=S7>S8,則下面結(jié)論錯誤的是( 。
A.公差小于0B.a7=0
C.S9>S8D.S6,S7均為Sn的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.等腰直角三角形ABC的斜邊為$\sqrt{2}$,且AB⊥AC,E,F(xiàn)分別是AB,AC上的動點,AE=mAB(0≤m<1),AF=nAC(0<n<1),m+n=1,設(shè)BF與CE交點為P,且記d為AP取到最值時的EF的長度,則AP•d的取值范圍是( 。
A.$[\frac{1}{3},\frac{{\sqrt{2}}}{2})$B.$[\frac{{\sqrt{2}}}{3},\frac{{\sqrt{2}}}{2})$C.$[\frac{{\sqrt{5}}}{6},\frac{{\sqrt{2}}}{2})$D.$[\frac{{\sqrt{6}}}{7},\frac{{\sqrt{2}}}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$,x∈R)的部分圖象如圖所示.
(1)求函數(shù)y=f(x)的解析式;
(2)當x∈[-π,-$\frac{π}{6}$]時,求y=f(x)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l過點P(1,2),斜率k=2
(1)寫出直線l的方程;   
(2)判斷點A(1,-2)是否在直線l上?
(3)直線n過點B(2,9)且平行于直線l,求直線n的方程;
(4)求直線l與直線n的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖是正方體平面展開圖,在這個正方體中
①BM與ED平行;
②CN與BE是異面直線;
③CN與BM成60°角;
④EM與BN垂直.
以上四個命題中,正確命題的序號是( 。
A.①②③B.②④C.③④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.二次函數(shù)y=ax2+bx+c圖象如圖所示:
①bc>0;
②2a-3c<0; 
③2a+b>0;
④ax2+bx+c=0有兩個解x1,x2,x1>0,x2<0;
⑤a+b+c>0; 
⑥當x>1時,y隨x增大而減小
以上結(jié)論正確的是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列對象能確定一個集合的是( 。
A.第一象限內(nèi)的所有點B.某班所有成績較好的學(xué)生
C.高一數(shù)學(xué)課本中的所有難題D.所有接近1的數(shù)

查看答案和解析>>

同步練習冊答案