到定點(diǎn)(0,p)(其中p>0)的距離等于到定直線y=-p的距離的軌跡方程為

[  ]

A.y2=2px

B.x2=2py

C.y2=4px

D.x2=4py

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點(diǎn)的軌跡是拋物線,并求出其方程;
(2)大家知道,過圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過圓心(定點(diǎn)).受此啟發(fā),研究下面問題:
1過(1)中的拋物線的頂點(diǎn)O任意作互相垂直的弦OA、OB,問:弦AB是否經(jīng)過一個(gè)定點(diǎn)?若經(jīng)過,請(qǐng)求出定點(diǎn)坐標(biāo),否則說明理由;2研究:對(duì)于拋物線上某一定點(diǎn)P(非頂點(diǎn)),過P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過定點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)下列條件,求拋物線的標(biāo)準(zhǔn)方程
(1)頂點(diǎn)在原點(diǎn),對(duì)稱軸是y軸,并經(jīng)過點(diǎn)P(-6,-3).
(2)拋物線y2=2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為8,它到焦點(diǎn)的距離為9.
(3)拋物線y2=2px(p>0)上的點(diǎn)到定點(diǎn)(1,0)的最近距離為
p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M到定點(diǎn)F(1,0)的距離比M到定直線x=-2的距離小1.
(1)求證:M點(diǎn)的軌跡是拋物線,并求出其方程;
(2)我們知道:“過圓上任意一點(diǎn)P,任意作互相垂直的弦PA、PB,則弦AB必過圓心”(定點(diǎn)).受此啟發(fā),研究下面問題:
對(duì)于拋物線y2=2px(p>0)上某一定點(diǎn)P(非頂點(diǎn)),過P任意作互相垂直的弦PA、PB,弦AB是否經(jīng)過定點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的準(zhǔn)線方程為x=-2,該拋物線上的點(diǎn)到其準(zhǔn)線的距離與到定點(diǎn)N的距離都相等,以N為圓心的圓與直線
l1:y=x和l2:y=-x都相切.
(Ⅰ)求圓N的方程;
(Ⅱ)是否存在直線l同時(shí)滿足下列兩個(gè)條件,若存在,求出的方程;若不存在請(qǐng)說明理由.
①l分別與直線l1和l2交于A、B兩點(diǎn),且AB中點(diǎn)為E(4,1);
②l被圓N截得的弦長(zhǎng)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知橢圓M:
y2
a2
+
x2
b2
=1
(a>b>0)的四個(gè)頂點(diǎn)構(gòu)成邊長(zhǎng)為5的菱形,原點(diǎn)O到直線AB的距離為
12
5
,其A(0,a),B(-b,0).直線l:x=my+n與橢圓M相交于C,D兩點(diǎn),且以CD為直徑的圓過橢圓的右頂點(diǎn)P(其中點(diǎn)C,D與點(diǎn)P不重合).
(1)求橢圓M的方程;
(2)試判斷直線l與x軸是否交于定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案