【題目】以下是某地搜集到的新房屋的銷售價(jià)格和房屋的面積的數(shù)據(jù):
(1)畫出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線;
(3)據(jù)(2)的結(jié)果估計(jì)當(dāng)房屋面積為時(shí)的銷售價(jià)格.
【答案】(1)見解析;(2);(3)31.2466(萬元)
【解析】
(1)根據(jù)表中所給的五對(duì)數(shù)據(jù),在平面直角坐標(biāo)系中描出五個(gè)點(diǎn),得到這組數(shù)據(jù)的散點(diǎn)圖;
(2)根據(jù)表中所給的數(shù)據(jù),求出橫坐標(biāo)和縱坐標(biāo)的平均數(shù),把求得的數(shù)據(jù)代入求線性回歸方程的系數(shù)的公式,利用最小二乘法得到結(jié)果,寫出回歸直線方程;
(3)根據(jù)第二問求得的線性回歸方程,代入所給的x的值,預(yù)報(bào)出銷售價(jià)格的估計(jì)值,這個(gè)數(shù)字不是一個(gè)準(zhǔn)確數(shù)值.
數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖如圖所示:
(2),,
設(shè)所求回歸直線方程為,
則
故所求回歸直線方程為
(3)據(jù)(2),當(dāng)時(shí),銷售價(jià)格的估計(jì)值為:
(萬元)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)的定義域?yàn)?/span>R,當(dāng)x<0時(shí),f(x)>1,且對(duì)任意的實(shí)數(shù)x、y∈R,等式f(x)f(y)=f(x+y)恒成立.若數(shù)列{an}滿足a1=f(0),且f(an+1)=,則a2 017的值為( )
A. 4 033 B. 3 029 C. 2 249 D. 2 209
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有件產(chǎn)品,其中件是次品,其余都是合格品,現(xiàn)不放回的從中依次抽件.求:(1)第一次抽到次品的概率;
(2)第一次和第二次都抽到次品的概率;
(3)在第一次抽到次品的條件下,第二次抽到次品的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面上, ⊥ ,| |=| |=1, = + .若| |< ,則| |的取值范圍是( )
A.(0, ]
B.( , ]
C.( , ]
D.( , ]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)定義在(0,+∞)上的函數(shù) f(x),對(duì)于任意正實(shí)數(shù) a、b,都有 f(ab)=f(a)+f(b)﹣1,f(2)=0,且當(dāng) x>1 時(shí),f(x)<1.
(1)求 f(1)及的值;
(2)求證:f(x)在(0,+∞)上是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(sinx,﹣1), =(2cosx,1).
(1)若 ∥ ,求tanx的值;
(2)若 ⊥ ,又x∈[π,2π],求sinx+cosx的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(1+x)﹣ln(1﹣x),給出以下四個(gè)命題: ①x∈(﹣1,1),有f(﹣x)=﹣f(x);
②x1 , x2∈(﹣1,1)且x1≠x2 , 有 ;
③x1 , x2∈(0,1),有 ;
④x∈(﹣1,1),|f(x)|≥2|x|.
其中所有真命題的序號(hào)是( )
A.①②
B.③④
C.①②③
D.①②③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線經(jīng)過點(diǎn),且斜率為.
(I)求直線的方程;
(Ⅱ)若直線與平行,且點(diǎn)P到直線的距離為3,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com