【題目】已知向量 =(sinx,﹣1), =(2cosx,1).
(1)若 ,求tanx的值;
(2)若 ,又x∈[π,2π],求sinx+cosx的值.

【答案】
(1)解:由a∥b,得sinx1﹣2cosx(﹣1)=0,即sinx=﹣2cosx,

所以tanx=﹣2;


(2)解:由a⊥b,得sinx2cosx+1(﹣1)=0,即2sinxcosx=1,

又x∈[π,2π],所以sinx<0,cosx<0,即sinx+cosx<0

因?yàn)椋╯inx+cosx)2=sin2x+2sinxcosx+cos2x…(10分)=1+2sinxcosx=2,


【解析】(1)根據(jù)向量的平行的條件和同角的三角函數(shù)的關(guān)系即可求出;(2)根據(jù)向量的垂直的條件和同角的平方關(guān)系即可求出.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將直線(xiàn)2x﹣y+λ=0沿x軸向左平移1個(gè)單位,所得直線(xiàn)與圓x2+y2+2x﹣4y=0相切,則實(shí)數(shù)λ的值為(
A.﹣3或7
B.﹣2或8
C.0或10
D.1或11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn= ,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn= +(﹣1)nan , 求數(shù)列{bn}的前2n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)擬對(duì)某商品進(jìn)行促銷(xiāo),現(xiàn)有兩種方案供選擇,每種促銷(xiāo)方案都需分兩個(gè)月實(shí)施,且每種方案中第一個(gè)月與第二個(gè)月的銷(xiāo)售相互獨(dú)立.根據(jù)以往促銷(xiāo)的統(tǒng)計(jì)數(shù)據(jù),若實(shí)施方案1,預(yù)計(jì)第一個(gè)月的銷(xiāo)量是促銷(xiāo)前的1.2倍和1.5倍的概率分別是0.6和0.4,第二個(gè)月的銷(xiāo)量是第一個(gè)月的1.4倍和1.6倍的概率都是0.5;若實(shí)施方案2,預(yù)計(jì)第一個(gè)月的銷(xiāo)量是促銷(xiāo)前的1.4倍和1.5倍的概率分別是0.7和0.3,第二個(gè)月的銷(xiāo)量是第一個(gè)月的1.2倍和1.6倍的概率分別是0.6和0.4.令表示實(shí)施方案的第二個(gè)月的銷(xiāo)量是促銷(xiāo)前銷(xiāo)量的倍數(shù).

(Ⅰ)求 的分布列;

(Ⅱ)不管實(shí)施哪種方案, 與第二個(gè)月的利潤(rùn)之間的關(guān)系如下表,試比較哪種方案第二個(gè)月的利潤(rùn)更大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)過(guò)點(diǎn)A(2,0),B(0,1)兩點(diǎn).
(1)求橢圓C的方程及離心率;
(2)設(shè)直線(xiàn)l與橢圓相交于不同的兩點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(﹣a,0),點(diǎn) Q(0,y0)在線(xiàn)段AB的垂直平分線(xiàn)上,且 =4,求y0的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的首項(xiàng)a1=a,Sn是數(shù)列{an}的前n項(xiàng)和,且滿(mǎn)足:Sn2=3n2an+Sn12 , an≠0,n≥2,n∈N*
(1)若數(shù)列{an}是等差數(shù)列,求a的值;
(2)確定a的取值集合M,使a∈M時(shí),數(shù)列{an}是遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示的幾何體中,四邊形AA1B1B是邊長(zhǎng)為3的正方形,CC1=2,CC1∥AA1 , 這個(gè)幾何體是棱柱嗎?若是,指出是幾棱柱.若不是棱柱,請(qǐng)你試用一個(gè)平面截去一部分,使剩余部分是一個(gè)棱長(zhǎng)為2的三棱柱,并指出截去的幾何體的特征,在立體圖中畫(huà)出截面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形中, , , , 分別為的中點(diǎn),對(duì)于常數(shù),在梯形的四條邊上恰好有8個(gè)不同的點(diǎn),使得成立,則實(shí)數(shù)的取值范圍是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,已知a1=2,an+1=Sn+2.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)令bn=(2n﹣1)an , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案