【題目】已知函數(shù)

)若曲線在點處的切線與直線平行,求的值.

)在(1)的條件下,求函數(shù)的單調(diào)區(qū)間和極值.

)在(1)的條件下,試判斷函數(shù)的零點個數(shù),并說明理由.

【答案】.()單調(diào)遞減區(qū)間,單調(diào)遞減區(qū)間,極大值為.(

【解析】試題分析:(1)欲求a的值,根據(jù)在點(1,f(1))處的切線方程,只須求出其斜率的值即可,故先利用導數(shù)求出在x=1處的導函數(shù)值,再結(jié)合導數(shù)的幾何意義即可求出切線的斜率.再列出一個等式,最后解方程組即可得.

(2)先求出f(x)的導數(shù),根據(jù)f′(x)>0求得的區(qū)間是單調(diào)增區(qū)間,f′(x)<0求得的區(qū)間是單調(diào)減區(qū)間,最后求出極值即可.

)將的零點個數(shù)問題轉(zhuǎn)化為函數(shù)與函數(shù)y的交點個數(shù)問題,畫出兩個函數(shù)圖象的草圖,可知有兩個交點.即個零點.

試題解析,

,即

,令,,

極大值

單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為

極大值為

時,即為

由(作出大致圖象,

由圖可知有兩個交點.

個零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】中國有個名句“運籌帷幄之中,決勝千里之外”,其中的“籌”原意是指《孫子算經(jīng)》中記載的算籌.古代是用算籌來進行計算,算籌是將幾寸長的小竹棍擺在平面上進行運算,算籌的擺放形式有縱橫兩種形式,(如圖所示),表示一個多位數(shù)時,像阿拉伯計數(shù)一樣,把各個數(shù)位的數(shù)碼從左到右排列,但各位數(shù)碼的籌式需要縱橫相間,個位、百位、萬位數(shù)用縱式表示,十位、千位、十萬位用橫式表示,以此類推.例如8455用算籌表示就是,則以下用算籌表示的四位數(shù)正確的為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一對夫婦為了給他們的獨生孩子支付將來上大學的費用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為  

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著人工智能的興起,越來越多的事物可以用機器人替代,某學�?萍夹〗M自制了一個機器人小青,共可以解決函數(shù)、解析幾何、立體幾何三種題型已知一套試卷共有該三種題型題目20道,小青解決一個函數(shù)題需要6分鐘,解決一個解析幾何題需要3分鐘,解決一個立體幾何題需要9分鐘已知小青一次開機工作時間不能超過90分鐘,若答對一道函數(shù)題給8分,答對一道解析幾何題給6分,答對一道立體幾何題給9該興趣小組通過合理分配題目可使小青在一次開機工作時間內(nèi)做這套試卷得分最高,則最高得分為______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù),試研究函數(shù)的極值情況;

(2)記函數(shù)在區(qū)間內(nèi)的零點為,記,若在區(qū)間內(nèi)有兩個不等實根,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)證明:當時,恒成立;

(2)若函數(shù)上只有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面內(nèi)的定點到定直線的距離等于,動圓過點且與直線相切,記圓心的軌跡為曲線.在曲線上任取一點,過的垂線,垂足為.

(1)求曲線的軌跡方程;

(2)記點到直線的距離為,且,求的取值范圍;

(3)判斷的平分線所在的直線與曲線的交點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》中對一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵.將一塹堵沿其一頂點與相對的棱刨開,得到一個陽馬(底面是長方形,且有一條側(cè)棱與底面垂直的四棱錐)和一個鱉臑(四個面均為直角三角形的四面體).在如圖所示的塹堵中, , ,則陽馬的外接球的表面積是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,平面多邊形中,AE=ED,AB=BD,且,現(xiàn)沿直線,將折起,得到四棱錐.

(1)求證: ;

(2)若,求PD與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案