設曲線C的方程是y=x3-x,將C沿x軸、y軸正向分別平行移動t、s單位長度后得曲線C1
(1)寫出曲線C1的方程;
(2)證明曲線C與C1關于點A()對稱;
(3)如果曲線C與C1有且僅有一個公共點,證明s=-t且t≠0.
【答案】分析:(1)將C沿x軸、y軸正向分別平行移動t、s單位長度后,x變?yōu)閤-t,y變?yōu)閥-s,
(2)在曲線C上任取一點B1(x1,y1),利用中點公式求出它關于點A的對稱點B2,證明點B2在曲線C1上,同樣證明,
在曲線C1上的點關于點A的對稱點在曲線C上.
(3)曲線C與C1有且僅有一個公共點,即方程組有唯一解,對應的一元二次方程的判別式等于0,
解答:(1)解:曲線C1的方程為 y=(x-t)3-(x-t)+s.
(2)證明:在曲線C上任取一點B1(x1,y1).設B2(x2,y2)是B1關于點A的對稱點,
則有,所以x1=t-x2,y1=s-y2
代入曲線C的方程,得x2和y2滿足方程:
s-y2=(t-x23-(t-x2),即y2=(x2-t)3-(x2-t)+s,可知點B2(x2,y2)在曲線C1上.
反過來,同樣可以證明,在曲線C1上的點關于點A的對稱點在曲線C上.
因此,曲線C與C1關于點A對稱.
(3)證明:因為曲線C與C1有且僅有一個公共點,所以,方程組有且僅有一組解.
消去y,整理得 3tx2-3t2x+(t3-t-s)=0,這個關于x的一元二次方程有且僅有一個根.
所以t≠0并且其根的判別式△=9t4-12t(t3-t-s)=0,即
所以且t≠0.
點評:本小題主要考查函數(shù)圖象、方程與曲線,曲線的平移、對稱和相交等基礎知識,考查運動、變換等數(shù)學思想方法以及綜合運用數(shù)學知識解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設曲線C的方程是y=x3-x,將C沿x軸、y軸正向分別平行移動t、s單位長度后得曲線C1
(1)寫出曲線C1的方程;
(2)證明曲線C與C1關于點A(
t
2
,
s
2
)對稱;
(3)如果曲線C與C1有且僅有一個公共點,證明s=
t3
4
-t且t≠0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設曲線C的方程是y=x3-x,將C沿x軸、y軸正向分別平移t、s單位長度后,得到曲線C1
(1)寫出曲線C1的方程;
(2)證明:曲線C與C1關于點A(
t
2
,
s
2
)對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設曲線C的方程是y=x3x,將C沿x軸、y軸正向分別平移ts單位長度后,得到曲線C1.

(1)寫出曲線C1的方程;

(2)證明:曲線CC1關于點A,)對稱.

查看答案和解析>>

科目:高中數(shù)學 來源:2006年高考第一輪復習數(shù)學:5.3 兩點間距離公式、線段的定比分點與圖形的平移(解析版) 題型:解答題

設曲線C的方程是y=x3-x,將C沿x軸、y軸正向分別平移t、s單位長度后,得到曲線C1
(1)寫出曲線C1的方程;
(2)證明:曲線C與C1關于點A()對稱.

查看答案和解析>>

同步練習冊答案