方程=c(a,b,c∈R)所表示的圖形是雙曲線的充要條件是________.

答案:
解析:

ab<0且c≠0


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+2cos2x-m

(1)若方程f(x)=0在x∈[0,
π
2
]
上有解,求m的取值范圍;
(2)在△ABC中,a,b,c分別是A,B,C所對(duì)的邊,當(dāng)(1)中的m取最大值且f(A)=-1,b+c=2時(shí),求a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

11、下列關(guān)于線性回歸,以下說法正確的是( 。
①變量取值一定時(shí),因變量的取值帶有一定的隨機(jī)性的兩個(gè)變量之間的關(guān)系叫做相關(guān)關(guān)系;
②在平面直角坐標(biāo)系中用描點(diǎn)的方法得到的表示具有相關(guān)關(guān)系的兩個(gè)變量的一組數(shù)據(jù)的圖形叫做散點(diǎn)圖;
③線性回歸直線方程最能代表觀測(cè)值x、y之間的線性相關(guān)關(guān)系;
④任何一組觀測(cè)值都能得到具有代表意義的回歸直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x3
3
+
a
2
x2+bx+c(a,b,c∈
R),函數(shù)f(x)的導(dǎo)數(shù)記為f'(x).
(1)若a=f'(2),b=f'(1),c=f'(0),求a、b、c的值;
(2)在(1)的條件下,記F(n)=
1
f′(n)+2
,求證:F(1)+F(2)+F(3)+…+F(n)<
11
18
(n∈
N*);
(3)設(shè)關(guān)于x的方程f'(x)=0的兩個(gè)實(shí)數(shù)根為α、β,且1<α<β<2.試問:是否存在正整數(shù)n0,使得|f′(n0)|≤
1
4
?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)使用類比推理得到如下結(jié)論:
(1)同一平面內(nèi),三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b,類比出:空間中,三條不同的直線a,b,c,若a⊥c,b⊥c,則a∥b;
(2)a,b∈R,a-b>0則a>b,類比出:a,b∈C,a-b>0則a>b;
(3)以點(diǎn)(0,0)為圓心,r為半徑的圓的方程是x2+y2=r2,類比出:以點(diǎn)(0,0,0)為球心,r為半徑的球的方程是x2+y2+z2=r2;
(4)正三角形ABC中,M是BC的中點(diǎn),O是△ABC外接圓的圓心,則
AO
OM
=2
,類比出:在正四面體ABCD中,若M是△BCD的三邊中線的交點(diǎn),O為四面體ABCD外接球的球心,則
AO
OM
=3

其中類比的結(jié)論正確的個(gè)數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案