【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(其中為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為(其中為常數(shù)).
(1)若直線與曲線恰好有一個公共點,求實數(shù)的值;
(2)若,求直線被曲線截得的弦長.
【答案】(1);(2).
【解析】試題分析:(1)將直線的極坐標(biāo)方程可化為直線坐標(biāo)方程,曲線的參數(shù)方程可化為普通方程,然后將兩個方程聯(lián)立,消去一個未知數(shù),得到一個一元二次方程,由直線和曲線恰好有一個公共點,得,即可求解;
(2)當(dāng)時,直線恰好過拋物線的焦點,聯(lián)立得方程組,消去得到關(guān)于的一元二次方程,然后由韋達定理及拋物線過焦點的弦長公式,即可求得弦長.
試題解析: (1)直線的極坐標(biāo)方程可化為直線坐標(biāo)方程:,曲線的參數(shù)方程可化為普通方程:,
由,可得,
因為直線和曲線恰好有一個公共點,
所以,所以.
(2)當(dāng)時,直線恰好過拋物線的焦點,
由,可得,
設(shè)直線與拋物線的兩個交點分別為,則,
故直線被拋物線所截得的弦長為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,AP⊥平面PCD,AD∥BC,AB=BC=AD,E,F分別為線段AD,PC的中點.
(1)求證:AP∥平面BEF;
(2)求證:BE⊥平面PAC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某P2P平臺需要了解該平臺投資者的大致年齡分布,發(fā)現(xiàn)其投資者年齡大多集中在區(qū)間[20,50]歲之間,對區(qū)間[20,50]歲的人群隨機抽取20人進行了一次理財習(xí)慣調(diào)查,得到如下統(tǒng)計表和各年齡段人數(shù)頻率分布直方圖:
組數(shù) | 分組 | 人數(shù)(單位:人) |
第一組 | [20,25) | 2 |
第二組 | [25,30) | a |
第三組 | [30,35) | 5 |
第四組 | [35,40) | 4 |
第五組 | [40,45) | 3 |
第六組 | [45,50] | 2 |
(Ⅰ)求a的值并畫出頻率分布直方圖;
(Ⅱ)在統(tǒng)計表的第五與第六組的5人中,隨機選取2人,求這2人的年齡都小于45歲的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量a=(sin x,mcos x),b=(3,-1).
(1)若a∥b,且m=1,求2sin2x-3cos2x的值;
(2)若函數(shù)f(x)=a·b的圖象關(guān)于直線對稱,求函數(shù)f(2x)在上的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線x2=y,點,拋物線上的點,過點B作直線AP的垂線,垂足為Q.
(1)求直線AP斜率的取值范圍;
(2)求|PA|·|PQ|的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,平面平面, , , , 分別為線段上的點,且, , .
(1)求證: 平面;
(2)若與平面所成的角為,求平面與平面所成的銳二面角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分別是AC1,BB1的中點,則直線DE與平面BB1C1C所成角的正弦值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com