【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)對任意的,,,恒有,求實數(shù)的取值范圍.
【答案】(1)見解析;(2).
【解析】
(1)對函數(shù)進(jìn)行求導(dǎo)后得到,對分情況進(jìn)行討論:、、、;
(2)由(1)知在上單調(diào)遞減,不妨設(shè),從而把不等式中的絕對值去掉得:,進(jìn)而構(gòu)造函數(shù),把問題轉(zhuǎn)化為恒成立問題,求得實數(shù)的取值范圍。
(1),
當(dāng)時,,所以在上單調(diào)遞增;
當(dāng)時,或,,所以在,上單調(diào)遞增;
,,所以在上單調(diào)遞減.
當(dāng)時,或,,所以在,上單調(diào)遞增;
,,所以在上單調(diào)遞減.
當(dāng)時,,,所以在上單調(diào)遞減;
,,所以在上單調(diào)遞增.
(2)因為,由(1)得,在上單調(diào)遞減,不妨設(shè),
由得,
即.
令,
,只需恒成立,
即恒成立,
即,
即.因為(當(dāng)且僅當(dāng)時取等號),
所以實數(shù)的取值范圍是.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代十進(jìn)制的算籌計數(shù)法,在數(shù)學(xué)史上是一個偉大的創(chuàng)造,算籌實際上是一根根同長短的小木棍.如圖,是利用算籌表示數(shù)的一種方法.例如:3可表示為“”,26可表示為“”.現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則可以用這9數(shù)字表示兩位數(shù)的個數(shù)為
A.13B.14C.15D.16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面,平面平面,是邊長為2的等邊三角形,,.
(1)證明:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,為其焦點,橢圓,,為其左右焦點,離心率,過作軸的平行線交橢圓于兩點,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過拋物線上一點作切線交橢圓于兩點,設(shè)與軸的交點為,的中點為,的中垂線交軸為,,的面積分別記為,,若,且點在第一象限.求點的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線和動直線.直線交拋物線于兩點,拋物線在處的切線的交點為.
(1)當(dāng)時,求以為直徑的圓的方程;
(2)求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地的中小學(xué)辦學(xué)條件在政府的教育督導(dǎo)下,迅速得到改變.教育督導(dǎo)一年后.分別隨機(jī)抽查了初中(用表示)與小學(xué)(用表示)各10所學(xué)校.得到相關(guān)指標(biāo)的綜合評價得分(百分制)的莖葉圖如圖所示.則從莖葉圖可得出正確的信息為( )(80分及以上為優(yōu)秀). ①初中得分與小學(xué)得分的優(yōu)秀率相同;②初中得分與小學(xué)得分的中位數(shù)相同③初中得分的方差比小學(xué)得分的方差大④初中得分與小學(xué)得分的平均分相同.
A.①②B.①③C.②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】條形碼是由一組規(guī)則排列的條、空及其對應(yīng)的代碼組成,用來表示一定的信息,我們通常見的條形碼是“”通用代碼,它是由從左到右排列的個數(shù)字(用,,…,表示)組成,這些數(shù)字分別表示前綴部分、制造廠代碼、商品代碼和校驗碼,其中是校驗碼,用來校驗前個數(shù)字代碼的正確性.圖(1)是計算第位校驗碼的程序框圖,框圖中符號表示不超過的最大整數(shù)(例如).現(xiàn)有一條形碼如圖(2)所示(),其中第個數(shù)被污損,那么這個被污損數(shù)字是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“柯西不等式”是由數(shù)學(xué)家柯西在研究數(shù)學(xué)分析中的“流數(shù)”問題時得到的,但從歷史的角度講,該不等式應(yīng)當(dāng)稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因為正是后兩位數(shù)學(xué)家彼此獨立地在積分學(xué)中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學(xué)選修教材4﹣5中給出了二維形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2當(dāng)且僅當(dāng)ad=bc(即)時等號成立.該不等式在數(shù)學(xué)中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時x的值分別為( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠因排污比較嚴(yán)重,決定著手整治,一個月時污染度為,整治后前四個月的污染度如下表:
月數(shù) | … | ||||
污染度 | … |
污染度為后,該工廠即停止整治,污染度又開始上升,現(xiàn)用下列三個函數(shù)模擬從整治后第一個月開始工廠的污染模式:,,,其中表示月數(shù),、、分別表示污染度.
(1)問選用哪個函數(shù)模擬比較合理,并說明理由;
(2)若以比較合理的模擬函數(shù)預(yù)測,整治后有多少個月的污染度不超過.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com