【題目】為了解某校高三畢業(yè)班報(bào)考體育專業(yè)學(xué)生的體重(單位:千克)情況,將從該市某學(xué)校抽取的樣本數(shù)據(jù)整理后得到如下頻率分布直方圖.已知圖中從左至右前3個(gè)小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12. (I)求該校報(bào)考體育專業(yè)學(xué)生的總?cè)藬?shù)n;
(Ⅱ)若用這所學(xué)校的樣本數(shù)據(jù)來(lái)估計(jì)該市的總體情況,現(xiàn)從該市報(bào)考體育專業(yè)的學(xué)生中任選3人,設(shè)ξ表示體重超過(guò)60千克的學(xué)生人數(shù),求ξ的分布列和數(shù)學(xué)期望.

【答案】解:(I)設(shè)該校報(bào)考體育專業(yè)的人數(shù)為n,前三小組的頻率分別為p1 , p2 , p3 , 則由題意可知, ,
解得p1=0.125,p2=0.25,p3=0.375.
又因?yàn)閜2=0.25= ,故n=48.
(II)由(I)可得,一個(gè)報(bào)考學(xué)生體重超過(guò)60公斤的概率為p=p3+(0.0375+0.0125)×5=
所以ξ服從二項(xiàng)分布,P(ξ=k)=C k2k , k=0,1,2,3
∴隨機(jī)變量ξ的分布列為:

則Eξ=0× +1× +2× +3× = .(或Eξ=3× =
【解析】(I)設(shè)報(bào)考體育專業(yè)的人數(shù)為n,前三小組的頻率分別為p1 , p2 , p3 , 根據(jù)前3個(gè)小組的頻率之比為1:2:3和所求頻率和為1建立方程組,解之即可求出第二組頻率,然后根據(jù)樣本容量等于 進(jìn)行求解即可;(II)由(I)可得,一個(gè)報(bào)考學(xué)生體重超過(guò)60公斤的概率為p,通過(guò)X服從二項(xiàng)分布P(ξ=k),從而求出ξ的分布列,最后利用數(shù)學(xué)期望公式進(jìn)行求解.
【考點(diǎn)精析】利用離散型隨機(jī)變量及其分布列對(duì)題目進(jìn)行判斷即可得到答案,需要熟知在射擊、產(chǎn)品檢驗(yàn)等例子中,對(duì)于隨機(jī)變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機(jī)變量叫做離散型隨機(jī)變量.離散型隨機(jī)變量的分布列:一般的,設(shè)離散型隨機(jī)變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個(gè)值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機(jī)變量X 的概率分布,簡(jiǎn)稱分布列.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等差數(shù)列{an}中,已知a1+a2=2,a2+a3=10,求通項(xiàng)公式an及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=4cosxsin(x+ )+a的最大值為2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在R上的函數(shù)f(x)滿足f(x)+f(x+5)=16,當(dāng)x∈(﹣1,4]時(shí),f(x)=x2﹣2x , 則函數(shù)f(x)在區(qū)間[0,2016]上的零點(diǎn)個(gè)數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】歐陽(yáng)修《賣油翁)中寫(xiě)到:(翁)乃取一葫蘆置于地,以錢覆其口,徐以杓酌漓瀝之,自錢孔入,而錢不濕,可見(jiàn)行行出狀元,賣油翁的技藝讓人嘆為觀止,若銅錢是直徑為4 cm的圓,中間有邊長(zhǎng)為l cm的正方形孔.若隨機(jī)向銅錢上滴一滴油(設(shè)油滴整體落在銅錢上).則油滴(設(shè)油滴是直徑為0.2 cm的球)正好落入孔中(油滴整體落入孔中)的概率是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)的定義域?yàn)镽,且f(x)不為常值函數(shù),有以下命題: ①函數(shù)g(x)=f(x)+f(﹣x)一定是偶函數(shù);
②若對(duì)任意x∈R都有f(x)+f(2﹣x)=0,則f(x)是以2為周期的周期函數(shù);
③若f(x)是奇函數(shù),且對(duì)于任意x∈R,都有f(x)+f(2+x)=0,則f(x)的圖象的對(duì)稱軸方程為x=2n+1(n∈Z);
④對(duì)于任意的x1 , x2∈R,且x1≠x2 , 若 >0恒成立,則f(x)為R上的增函數(shù),
其中所有正確命題的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】先后擲子(子的六個(gè)面上分別標(biāo)有1,2,3,4,5,6個(gè)點(diǎn))兩次,落在水平桌面后,記正面朝上的點(diǎn)數(shù)分別為x,y,設(shè)事件A為“x+y為偶數(shù)”,事件B為“x,y中有偶數(shù)且x≠y”,則概率P(B|A)=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中, 為參數(shù)),以原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,已知曲線.

(1)求的普通方程及的直角坐標(biāo)方程,并說(shuō)明它們分別表示什么曲線;

2)若分別為 上的動(dòng)點(diǎn),且的最小值為2,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市A,B兩所中學(xué)的學(xué)生組隊(duì)參加辯論賽,A中學(xué)推薦了3名男生、2名女生,B中學(xué)推薦了3名男生、4名女生,兩校所推薦的學(xué)生一起參加集訓(xùn).由于集訓(xùn)后隊(duì)員水平相當(dāng),從參加集訓(xùn)的男生中隨機(jī)抽取3人、女生中隨機(jī)抽取3人組成代表隊(duì).

(1)A中學(xué)至少有1名學(xué)生入選代表隊(duì)的概率;

(2)某場(chǎng)比賽前,從代表隊(duì)的6名隊(duì)員中隨機(jī)抽取4人參賽,設(shè)X表示參賽的男生人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案