已知a為實(shí)數(shù),若
1+2i
a+i
3
2
,則a=
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:利用復(fù)數(shù)的運(yùn)算法則和復(fù)數(shù)為實(shí)數(shù)的充要條件即可得出.
解答: 解:∵
1+2i
a+i
=
(1+2i)(a-i)
(a+i)(a-i)
=
a+2
a2+1
+
2a-1
a2+1
i>
3
2
,
2a-1=0,即a=
1
2

故答案為:
1
2
點(diǎn)評:本題考查了復(fù)數(shù)的運(yùn)算法則和復(fù)數(shù)為實(shí)數(shù)的充要條件,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

溝渠的截面是一個等腰梯形,且兩腰與下底邊之和為6米,上底長為一腰和下底長之和,試問等腰梯形的腰與上下底長各為多少時,水流最大?并求出截面面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上的動點(diǎn)R(x,y)及兩定點(diǎn)A(-2,0),B(2,0),直線RA、RB斜率分別為k1、k2,且k1•k2=-
3
4
,設(shè)動點(diǎn)R的軌跡為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)四邊形MNPQ的四個頂點(diǎn)均在曲線C上,且MQ∥NP,MQ⊥x軸,若直線MN和直線QP交于點(diǎn)S(4,0),問:四邊形MNPQ兩條對角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請說明理由.交曲線C于點(diǎn)Q.求證:直線NQ過定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x-1
+
1
2-x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x軸上一點(diǎn)p到直線3x+4y-5=0的距離為4,則點(diǎn)p的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有若干個棱長為1的正方體搭成的幾何體主視圖與側(cè)視圖相同(如圖所示),則搭成該幾何體體積的最大值與最小值的和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-
1
ax
(a>1),當(dāng)θ∈[0,
π
2
]變化時,f(msinθ)+f(1-m)≥0恒成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α為第三象限角,則2α不可能在第
 
象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖中的三角形稱為希爾賓斯三角形,在下列四個三角形中,黑色三角形的個數(shù)依次構(gòu)成數(shù)列{an}的前四項,依此著色方案繼續(xù)對三角形著色.

(1)數(shù)列{an}的通項公式an=
 
;
(2)若數(shù)列{bn}滿足bn=(
2
3
n•an+1,記M=C
 
0
20
+C
 
1
20
+C
 
2
20
•b1+C
 
3
20
•b2+…+C
 
20
20
•b19,則M的個位數(shù)字是
 

查看答案和解析>>

同步練習(xí)冊答案