已知數(shù)學公式=1,求證:方程ax2+bx+c=0有實數(shù)根.

證明:由=1,∴b=
∴b2=(+c)2=+2ac+2c2=4ac+(-c)2≥4ac.
∴方程ax2+bx+c=0有實數(shù)根.
分析:由等式求得b,要使方程有根,需要△≥0,然后看是否b2≥4ac即可.
點評:本題考查學生對判別式的利用,判別式與根的關系.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知:關于x的方程2x2+kx-1=0
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的一個根是-1,求另一個根及k值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)附加題:
A.如圖,四邊形ABCD內(nèi)接于圓O,弧AB=弧AD,過A點的切線交CB的延長線于E點.
求證:AB2=BE•CD.
B.設數(shù)列{an},{bn}滿足an+1=3an+2bn,bn+1=2bn,且滿足
an+4
bn+4
=M
an
bn
,試求二階矩陣M.
C.已知橢圓C的極坐標方程為ρ2=
12
3cos2θ+4sin2θ
,點F1,F(xiàn)2為其左、右焦點,直線l的參數(shù)方程為
x=2+
2
2
t
y=
2
2
t
(t為參數(shù),t∈R).求點F1,F(xiàn)2到直線l的距離之和.
D.已知x,y,z均為正數(shù).求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知曲線C的極坐標方程為ρ2=
36
4cos2θ+9sin2θ
;
(Ⅰ)若以極點為原點,極軸所在的直線為x軸,求曲線C的直角坐標方程;
(Ⅱ)若P(x,y)是曲線C上的一個動點,求3x+4y的最大值
(2)已知a,b,c為實數(shù),且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2+m-1=0

(I)求證:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14
;
(II)求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2006年高考第一輪復習數(shù)學:6.3 不等式的證明2(解析版) 題型:解答題

已知=1,求證:方程ax2+bx+c=0有實數(shù)根.

查看答案和解析>>

同步練習冊答案