設(shè)集合A={x|x2+4x=0,x∈R}、B={x|x2+2(a+1)x+a2-1=0},若B是A的子集,求實(shí)數(shù)a的范圍.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:求出集合A、B的元素,利用B是A的子集,即可求出實(shí)數(shù)a的范圍.
解答: 解:∵A={x|x2+4x=0,x∈R}、
∴A={0,-4}
∵B={x|x2+2(a+1)x+a2-1=0},且B⊆A
故①B=Φ時(shí),△=4(a+1)2-4(a2-1)<0,即a<-1,滿足B⊆A
②B≠Φ時(shí),當(dāng)a=-1,此時(shí)B={0},滿足B⊆A
當(dāng)a>-1時(shí),x=0,-4是方程x2+2(a+1)x+a2-1=0的兩個(gè)根
故a=1
綜上所述a=1或a≤-1
點(diǎn)評:本題主要考查集合的基本運(yùn)算,屬于基礎(chǔ)題.要正確判斷兩個(gè)集合間的關(guān)系,必須對集合的相關(guān)概念有深刻的理解,善于抓住代表元素,認(rèn)清集合的特征.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,坐標(biāo)紙上的每個(gè)單元格的邊長為1,由下往上的六個(gè)點(diǎn):1,2,3,4,5,6的橫縱坐標(biāo)分別對應(yīng)數(shù)列{an}(n∈N*)的前12項(xiàng),如下表所示:
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12
x1 y1 x2 y2 x3 y3 x4 y4 x5 y5 x6 y6
按如此規(guī)律下去,則a2013=( 。
A、501B、502
C、503D、504

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且asinB+bcosA=0.
(Ⅰ)求角A的大;
(Ⅱ)若a=
2
,b=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A、B、C所對的邊分別是 a,b,c,且滿足
3
a-2bsinA=0

(Ⅰ)求角B的大;           
(Ⅱ)若b=
7
,a=3
,求c的值;
(Ⅲ)若b=
7
,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=
x(1-x)(x<0)
x(1+x)(x>0)
的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|1<ax+2≤6},集合B={x|-
1
3
<x≤3},
(1)若A⊆B,求實(shí)數(shù)a的取值范圍;
(2)若B⊆A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在直徑為BC的半圓中,A是弧BC上一點(diǎn),正方形PQRS內(nèi)接于△ABC,若BC=a,∠ABC=θ,設(shè)△ABC的面積為Sl,正方形PQRS的面積為S2
(1)用a,θ表示S1和S2
(2)當(dāng)a固定,θ變化時(shí),求
S1
S2
取得最小值時(shí)θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={1,6,9},B={1,2},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x=
 
時(shí),函數(shù)y=sin(2x-
π
6
)+3有最小值為
 

查看答案和解析>>

同步練習(xí)冊答案