函數(shù)f(x)=x-
1
x
是( 。
A、奇函數(shù)
B、偶函數(shù)
C、非奇非偶函數(shù)
D、既是奇函數(shù)又是偶函數(shù)
考點(diǎn):函數(shù)奇偶性的性質(zhì)
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:求出函數(shù)的定義域,判斷是否關(guān)于原點(diǎn)對(duì)稱,再計(jì)算f(-x),與f(x)比較,即可得到奇偶性.
解答: 解:函數(shù)f(x)=x-
1
x
的定義域?yàn)閧x|x≠0},關(guān)于原點(diǎn)對(duì)稱,
且f(-x)=-x-
1
-x
=-(x-
1
x
)=-f(x).
則f(x)為奇函數(shù).
故選A.
點(diǎn)評(píng):本題考查函數(shù)的奇偶性的判斷,注意運(yùn)用定義,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
5x-2
x
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C的參數(shù)方程為
x=4t2
y=4t
(y為參數(shù)),過點(diǎn)A(2,1)作平行于θ=
π
4
的直線l 與曲線C分別交于B,C兩點(diǎn)(極坐標(biāo)系的極點(diǎn)、極軸分別與直角坐標(biāo)系的原點(diǎn)、x軸的正半軸重合).
(Ⅰ)寫出曲線C的普通方程;
(Ⅱ)求B、C兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式:lg(x+1)≤1的解集為A,函數(shù):y=2x+a(x≤1)的值域?yàn)锽;
(1)求集合A和B;
(2)已知(∁RA)∪B=CRA,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某單位青年、中年、老年職員的人數(shù)之比為11:8:6,從中抽取200名職員作為樣本,則應(yīng)抽取青年職員的人數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上的雙曲線的一條漸近線方程為4x+3y=0,則該雙曲線的離心率為( 。
A、
1
4
B、
4
3
C、
5
4
D、
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

扇形的半徑是2cm,所對(duì)圓心角的弧度數(shù)是2,則此扇形所含的弧長(zhǎng)是
 
cm,扇形的面積是
 
cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,-
3
2
5
2
),
b
=(-3,λ,-
15
2
)滿足
a
b
,則λ等于( 。
A、
2
3
B、
9
2
C、-
9
2
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)中,f(1)=0,且對(duì)任意正整數(shù)x滿足f(x+1)=f(x)+2x,則f(2012)=( 。
A、2010×2011
B、20112
C、2011×2012
D、20122

查看答案和解析>>

同步練習(xí)冊(cè)答案