19.已知集合M={-1,0,1},集合N={y|y=sinx,x∈M},則M∩N=(  )
A.{-1,0,1}B.{0,1}C.{1}D.{0}

分析 先分別求出集合M,集合N,由此利用交集定義能求出M∩N.

解答 解:∵集合M={-1,0,1},
集合N={y|y=sinx,x∈M}={-sin1,0,sin1},
∴M∩N={0}.
故選:D.

點(diǎn)評 本題考查交集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意交集定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$,(x∈R).
(1)若對任意x∈[-$\frac{π}{12}$,$\frac{π}{2}$],都有f(x)≥a,求a的取值范圍;
(2)若先將y=f(x)的圖象上每個點(diǎn)縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉淼?倍,然后再向左平移$\frac{π}{6}$個單位得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)-$\frac{1}{3}$在區(qū)間[-2π,4π]內(nèi)的所有零點(diǎn)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,a、b、c分別是角A、B、C的對邊,C=2A,sinA=$\frac{\sqrt{7}}{4}$,
(I)求cosC,cosB的值;
(II)若ac=24,求邊b的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知數(shù)列{an}滿足an+1=3an+2,且a1=2.
(I)求證:數(shù)列{an+1}是等比數(shù)列;
(II)判斷數(shù)列$\{\frac{{2×{3^n}}}{{{a_n}{a_{n+1}}}}\}$的前n項和Tn與$\frac{1}{2}$的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.寫出數(shù)列的一個通項公式an=$\frac{n}{(2n+1)(2n+3)}$,使其前4項為$\frac{1}{15}$,$\frac{2}{35}$,$\frac{3}{63}$,$\frac{4}{99}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若(1-2x)2017=a0+a1x+a2x2+…+a2017x2017(x∈R),則$\frac{{a}_{1}}{2}$+$\frac{{a}_{2}}{{2}^{2}}$+…+$\frac{{a}_{2017}}{{2}^{2017}}$的值為( 。
A.2B.0C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.把二進(jìn)制數(shù)110111(2)化為十進(jìn)制數(shù)為( 。
A.51B.53C.55D.57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.坐標(biāo)原點(diǎn)O到直線3x+4y+5=0的距離為( 。
A.5B.4C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)數(shù)組A=(x1,x2,x3,x4,x5),其中xi∈{-1,0,1},i=1,2,3,4,5,求滿足條件“x1+x2+x3+x4+x5=1“的數(shù)組A的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案