分析 (1)利用三角恒等變換化簡f(x)的解析式,根據(jù)題意,x∈[-$\frac{π}{12}$,$\frac{π}{2}$]時,f(x)min≥a.再利用正弦函數(shù)的定義域和值域,求得f(x)的最小值,可得a的范圍.
(2)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律求得g(x)的解析式,根據(jù)正弦函數(shù)的圖象的對稱性,求得函數(shù)y=g(x)-$\frac{1}{3}$在區(qū)間[-2π,4π]內(nèi)的所有零點之和.
解答 解:(1)函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x+$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x=sin(2x-$\frac{π}{6}$),
若對任意x∈[-$\frac{π}{12}$,$\frac{π}{2}$],都有f(x)≥a,
則只需 f(x)min≥a即可.
∵2x-$\frac{π}{6}$∈[-$\frac{π}{3}$,$\frac{5π}{6}$],故當2x-$\frac{π}{6}$=-$\frac{π}{3}$時,
f(x)min=-$\frac{\sqrt{3}}{2}$,故 a≤-$\frac{\sqrt{3}}{2}$.
(2)若先將y=f(x)的圖象上每個點縱坐標不變,
橫坐標變?yōu)樵瓉淼?倍,可得y=sin(x-$\frac{π}{6}$)的圖象;
然后再向左平移$\frac{π}{6}$個單位得到函數(shù)y=g(x)=sinx的圖象.
令g(x)-$\frac{1}{3}$=0,求得sinx=$\frac{1}{3}$,
求函數(shù)y=g(x)-$\frac{1}{3}$在區(qū)間[-2π,4π]內(nèi)的所有零點之和.
由圖可知,sinx=$\frac{1}{3}$ 在區(qū)間[-2π,4π]內(nèi)有6個零點:x1,x2,x3,x4,x5,x6,
根據(jù)對稱性有 $\frac{{x}_{1}{+x}_{2}}{2}$=-$\frac{3π}{2}$,$\frac{{x}_{3}{+x}_{4}}{2}$=$\frac{π}{2}$,$\frac{{x}_{5}{+x}_{6}}{2}$=$\frac{5π}{2}$,
從而所有零點和為:x1+x2+x3+x4+x5+x6=3π.
點評 本題主要考查三角恒等變換,函數(shù)的恒成立問題,正弦函數(shù)的定義域和值域,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)的零點,正弦函數(shù)的圖象的對稱性,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 若b∥a,a?α,則b∥α | B. | 若α⊥β,α∩β=c,b⊥c,則b⊥β | ||
C. | 若a⊥c,b⊥c,則a∥b | D. | 若a∩b=A,a?α,b?α,a∥β,b∥β,則α∥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {-1,0,1} | B. | {0,1} | C. | {1} | D. | {0} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com