如圖正方形ABCD所在平面與正△PAD所在平面互相垂直,M,Q分別為PC,AD的中點(diǎn).
(1)求證:PA平面MBD;
(2)試問(wèn):在線段AB上是否存在一點(diǎn)N,使得平面PCN⊥平面PQB?若存在,試指出點(diǎn)N的位置,并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.
(1)連結(jié)AC交BD于O點(diǎn),連結(jié)OM
∵四邊形ABCD為正方形,∴O為AC的中點(diǎn)
因此OM是△PAC的中位線,可得PAOM
∵PA?平面MBD,OM?平面MBD,
∴PA平面MBD;
(2)取AB的中點(diǎn)N,連結(jié)PN、CN
∵正方形ABCD中,Q、N分別為AD、AB的中點(diǎn)
∴Rt△ABQ≌△BCN,可得CN⊥BQ
∵等邊△PAD中,Q是AD中點(diǎn),∴PQ⊥AD
∵側(cè)面PAD⊥底面ABCD,側(cè)面PAD∩底面ABCD=AD,
∴PQ⊥底面ABCD,
∵CN?底面ABCD,∴CN⊥PQ
∵BQ、PQ是平面PQB內(nèi)的相交直線,∴CN⊥平面PQB
∵CN?平面PCN,∴平面PCN⊥平面PQB
即在線段AB上存在AB的中點(diǎn)N,使得平面PCN⊥平面PQB.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,PC⊥底面ABC,AB⊥BC,D,E分別是AB、PB的中點(diǎn).
(1)求證:DE平面PAC;
(2)求證:AB⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖(1)在正方形SG1G2G3中,E、F分別是邊G1G2、G2G3的中點(diǎn),沿SE、SF及EF把這個(gè)正方形折成一個(gè)幾何體如圖(2),使G1,G2,G3三點(diǎn)重合于G,下面結(jié)論成立的是(  )
A.SG⊥平面EFGB.SD⊥平面EFGC.GF⊥平面SEFD.DG⊥平面SEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD為平行四邊形.∠DAB=60°,AB=2AD,PD⊥底面
ABCD.
(Ⅰ)證明:PA⊥BD
(Ⅱ)設(shè)PD=AD=1,求棱錐D-PBC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

△ABC所在平面外一點(diǎn)P,分別連接PA、PB、PC,則這四個(gè)三角形中直角三角形最多有( 。
A.4個(gè)B.3個(gè)C.2個(gè)D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

四邊形ABCD是邊長(zhǎng)為1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且MD=NB=1.E為BC的中點(diǎn).
(1)求異面直線NE與AM所成角的余弦值;
(2)在線段AN上是否存在點(diǎn)S,使得ES⊥平面AMN?
(3)若存在,求線段AS的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB為圓O的直徑,點(diǎn)C為圓O上異于A、B的一點(diǎn),PA⊥平面ABC,點(diǎn)A在PB、PC上的射影分別為點(diǎn)E、F.
(1)求證:PB⊥平面AFE;
(2)若AB=4,PA=3,BC=2,求三棱錐C-PAB的體積與此三棱錐的外接球(即點(diǎn)P、A、B、C都在此球面上)的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為2的菱形,∠ABC=60°,點(diǎn)M是棱PC的中點(diǎn),PA⊥平面ABCD,AC、BD交于點(diǎn)O.
(1)已知:PA=
2
,求證:AM⊥平面PBD;
(2)若二面角M-AB-D的余弦值等于
21
7
,求PA的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,E,F(xiàn)分別為AC,BC的中點(diǎn).
(1)求證:EF平面PAB;
(2)若平面PAC⊥平面ABC,且PA=PC,∠ABC=90°,求證:平面PEF⊥平面PBC.

查看答案和解析>>

同步練習(xí)冊(cè)答案