A. | ($\sqrt{2}$,+∞) | B. | ($\sqrt{3}$,+∞) | C. | ($\sqrt{2}$+1,+∞) | D. | ($\sqrt{3}$+1,+∞) |
分析 本題從AD與BC垂直入手,轉化為AD與AD′垂直,從何轉化為△AED′與△AED鋪在一個平面內后,∠D′AD≥90°.
解答 解:設翻折前的D記為D′,∵AD⊥BC,BC∥AD′,則在翻折過程中,存在某個位置使得直線AD與BC垂直,只需保證∠DAD′=900,∵∠D′AE=∠DAE,由極限位置知,只需保證∠D′AE≥45°即可.
在△D′AE中,AD′=1,∠D′AE=45°,∠AD′E=120°,則∠D′EA=15°,
由正弦定理知,$\frac{{D}^{′}E}{sin4{5}^{°}}=\frac{1}{sin1{5}^{°}}$,則D′E=$\sqrt{3}+1$.
因為E為線段CD(端點C,D除外)上的一動點,
則a>$\sqrt{3}+1$,
故選:D.
點評 本題考查了異面直線所成角及翻折問題,運用了轉化與化歸的數學思想和極限的解題方法,屬于難題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0 | B. | 2014 | C. | 2015 | D. | 2016 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{11π}{12}$ | B. | $\frac{π}{12}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com