(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分8分,第3小題滿分6分.
已知負(fù)數(shù)和正數(shù)
,且對(duì)任意的正整數(shù)n,當(dāng)
≥0時(shí), 有[
,
]=
[,
];當(dāng)
<0時(shí), 有[
,
]= [
,
].
(1)求證數(shù)列{}是等比數(shù)列;
(2)若,求證
;
(3)是否存在,使得數(shù)列
為常數(shù)數(shù)列?請(qǐng)說明理由
(1)當(dāng)≥0時(shí),bn+1-an+1= -an= ;
當(dāng)<0, bn+1-an+1= bn-= .
所以,總有bn+1-an+1= (bn-an),
又,可得
,
所以數(shù)列{bn-an}是等比數(shù)列. ………………4分
(2)①由,可得
,故有
,
∴,
,從而
,
故當(dāng)n=1時(shí),成立. ………………6分
②假設(shè)當(dāng)時(shí),
成立,即
,
由,可得
,
, 故有
,
∴, ………………9分
,故有
∴,
,故
∴當(dāng)時(shí),
成立.
綜合①②可得對(duì)一切正整數(shù)n,都有. ………………12分
(3)假設(shè)存在,使得數(shù)列
為常數(shù)數(shù)列,
由(1)可得bn-an=()n-1,又
,
故bn=()n-1, ………………14分
由恒成立,可知≥0,即
()n ≥0恒成立,
即2n≤對(duì)任意的正整數(shù)n恒成立, ………………16分
又是正數(shù),故n≤
對(duì)任意的正整數(shù)n恒成立,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/6e/d/11y7f3.gif" style="vertical-align:middle;" />是常數(shù),故n≤不可能對(duì)任意正整數(shù)n恒成立.
故不存在,使得數(shù)列
為常數(shù)數(shù)列. ………………18分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)
且法向量為
的直線
上的動(dòng)點(diǎn).當(dāng)
時(shí),設(shè)函數(shù)
的值域?yàn)榧?img width=21 height=17 src="http://thumb.zyjl.cn/pic1/1899/sx/18/333018.gif" >,不等式
的解集為集合
. 若
恒成立,求實(shí)數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時(shí),試寫出一個(gè)條件,使得函數(shù)
滿足“圖像關(guān)于點(diǎn)
對(duì)稱,且在
處
取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)
且法向量為
的直線
上的動(dòng)點(diǎn).當(dāng)
時(shí),設(shè)函數(shù)
的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic5/tikupic/89/5/a05qa.gif" style="vertical-align:middle;" />,不等式
的解集為集合
. 若
恒成立,求實(shí)數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時(shí),試寫出一個(gè)條件,使得函數(shù)
滿足“圖像關(guān)于點(diǎn)
對(duì)稱,且在
處
取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
(文)已知數(shù)列中,
(1)求證數(shù)列不是等比數(shù)列,并求該數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)和
;
(3)設(shè)數(shù)列的前
項(xiàng)和為
,若
對(duì)任意
恒成立,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市長(zhǎng)寧區(qū)高三教學(xué)質(zhì)量測(cè)試?yán)砜茢?shù)學(xué) 題型:解答題
本小題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
設(shè)函數(shù)是定義域?yàn)?i>R的奇函數(shù).
(1)求k值;
(2)(文)當(dāng)時(shí),試判斷函數(shù)單調(diào)性并求不等式f(x2+2x)+f(x-4)>0的解集;
(理)若f(1)<0,試判斷函數(shù)單調(diào)性并求使不等式恒成立的
的取值范圍;
(3)若f(1)=,且g(x)=a 2x+a - 2x-2m f(x) 在[1,+∞)上的最小值為-2,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:上海市普陀區(qū)2010屆高三第二次模擬考試?yán)砜茢?shù)學(xué)試題 題型:解答題
(本題滿分18分,其中第1小題5分,第2小題5分,第3小題8分)
在平面直角坐標(biāo)系中,已知為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,其中
且
.設(shè)
.
(1)若,
,
,求方程
在區(qū)間
內(nèi)的解集;
(2)若點(diǎn)是過點(diǎn)
且法向量為
的直線
上的動(dòng)點(diǎn).當(dāng)
時(shí),設(shè)函數(shù)
的值域?yàn)榧?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052111495710937700/SYS201205211152429218217731_ST.files/image019.png">,不等式
的解集為集合
. 若
恒成立,求實(shí)數(shù)
的最大值;
(3)根據(jù)本題條件我們可以知道,函數(shù)的性質(zhì)取決于變量
、
和
的值. 當(dāng)
時(shí),試寫出一個(gè)條件,使得函數(shù)
滿足“圖像關(guān)于點(diǎn)
對(duì)稱,且在
處
取得最小值”.(說明:請(qǐng)寫出你的分析過程.本小題將根據(jù)你對(duì)問題探究的完整性和在研究過程中所體現(xiàn)的思維層次,給予不同的評(píng)分.)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com