12.設(shè)等比數(shù)列{an}的公比為q,前n項(xiàng)和為Tn.(  )
A.若q>1,則數(shù)列{Tn}單調(diào)遞增B.若數(shù)列{Tn}單調(diào)遞增,則q>1
C.若Tn>0,則數(shù)列{Tn}單調(diào)遞增D.若數(shù)列{Tn}單調(diào)遞增,則Tn>0

分析 根據(jù)題意,結(jié)合等比數(shù)列的性質(zhì),依次分析選項(xiàng),綜合即可得答案.

解答 解:根據(jù)題意,依次分析選項(xiàng):
對(duì)于A、若等比數(shù)列{an}的公比為q>1,Tn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$,而當(dāng)首項(xiàng)a1<0時(shí),數(shù)列{Tn}不是單調(diào)遞減的,故A錯(cuò)誤,
對(duì)于B、當(dāng)?shù)缺葦?shù)列{an}的首項(xiàng)a1>0,公比為q=1時(shí),數(shù)列{Tn}單調(diào)遞增,故B錯(cuò)誤,
對(duì)于C、當(dāng)?shù)缺葦?shù)列{an}的首項(xiàng)a1>0,公比為q=1時(shí),Tn>0,故C錯(cuò)誤,
對(duì)于D、若數(shù)列{Tn}單調(diào)遞增,則有an=Tn-Tn-1>0,即等比數(shù)列{an}為正項(xiàng)數(shù)列,則Tn=a1+a2+a3+…+an>0,故D正確;
故選:D.

點(diǎn)評(píng) 本題考查等比數(shù)列的性質(zhì),關(guān)鍵是掌握等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若sinx=2sin(x+$\frac{π}{2}$),則cosxcos(x+$\frac{π}{2}$)=(  )
A.$\frac{2}{5}$B.-$\frac{2}{5}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.?dāng)?shù)列{an}滿足${a_1}=0,{a_2}=2,{a_{n+2}}=({1+{{cos}^2}\frac{nπ}{2}}){a_n}+4{sin^2}\frac{nπ}{2}$,n=1,2,3,….
(1)求a3,a4,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{{{a_{2n-1}}}}{{{a_{2n}}}}$,記F(m,n)=$\sum_{i=m}^n{b_i}({m,n∈{N^*},m<n})$,求證:m<n,F(xiàn)(m,n)<4對(duì)任意的;
(3)設(shè)Sk=a1+a3+a5+…+a2k-1,Tk=a2+a4+a6+…+a2k,Wk=$\frac{{2{S_k}}}{{2+{T_k}}}({k∈{N^*}})$,求使Wk>1的所有k的值,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知向量$\overrightarrow{a}$=(3,4),$\overrightarrow$=(2,3),則$\overrightarrow{a}$+$\overrightarrow$在$\overrightarrow{a}$-$\overrightarrow$方向上的投影為6$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知α為第二象限角,sin(α+$\frac{π}{4}$)=$\frac{\sqrt{2}}{10}$,則tanα的值為( 。
A.$-\frac{1}{2}$B.$\frac{1}{3}$C.$-\frac{4}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知向量$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{6},|{\overrightarrow a}|=2,|{\overrightarrow b}|=\sqrt{3}$,則$\overrightarrow a•({2\overrightarrow b-\overrightarrow a})$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA=AB=$\frac{1}{2}$AD=2,PB=2$\sqrt{2}$,PA⊥AD,底面ABCD為平行四邊形,∠ADC=60°,E為PD的中點(diǎn).
(Ⅰ)求證:AB⊥PC;
(Ⅱ)求多面體PABCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知雙曲線與橢圓$\frac{x^2}{9}+\frac{y^2}{25}=1$的焦點(diǎn)相同,且它們的離心率的乘積等于$\frac{8}{5}$,則此雙曲線的方程為( 。
A.$\frac{x^2}{4}-\frac{y^2}{12}=1$B.$\frac{y^2}{4}-\frac{x^2}{12}=1$C.$\frac{x^2}{12}-\frac{y^2}{4}=1$D.$\frac{y^2}{12}-\frac{x^2}{4}=1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.滿足$\left\{\begin{array}{l}{3x-y+2≥0}\\{3x+2y-4≤0}\\{y+1≥0}\end{array}\right.$,則z=x2+y2-4x-2y的取值范圍是-$\frac{29}{13}$≤z≤8.

查看答案和解析>>

同步練習(xí)冊(cè)答案