設(shè)拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)與橢圓的右焦點(diǎn)重合,則此拋物線的方程是(   )
A.y2=-8xB.y2=-4x C.y2="8x" D.y2=4x
C

試題分析:的右焦點(diǎn)為F(2,0),所以拋物線中=2,=4,拋物線的方程是y2=8x,故選C。
點(diǎn)評(píng):簡(jiǎn)單題,利用橢圓的幾何性質(zhì)可得拋物線焦點(diǎn)坐標(biāo)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的漸近線都與圓相切,且雙曲線的右焦點(diǎn)為圓C的圓心,則該雙曲線的方程是
A. B.C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

方程2x2ky2=1表示的是焦點(diǎn)在y軸上的橢圓,則實(shí)數(shù)k的取值范圍是(    )
A.(0,+∞)B.(2,+∞)C.(0,2)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在雙曲線中,F(xiàn)1、F2分別為其左右焦點(diǎn),點(diǎn)P在雙曲線上運(yùn)動(dòng),求△PF1F2的重心G的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知拋物線,焦點(diǎn)為,準(zhǔn)線為,為拋物線上一點(diǎn),,為垂足,如果直線的斜率為,那么        。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線的焦距為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,動(dòng)點(diǎn)滿足:,則動(dòng)點(diǎn)的軌跡為(     )
A.橢圓B.雙曲線C.拋物線D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的中心是坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為,又橢圓上任一點(diǎn)到兩焦點(diǎn)的距離和為,過(guò)點(diǎn)M(0,)與x軸不垂直的直線交橢圓于P、Q兩點(diǎn).
(1)求橢圓的方程;
(2)在y軸上是否存在定點(diǎn)N,使以PQ為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出N的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分15分) 已知?jiǎng)訄A過(guò)定點(diǎn),且與直線相切,橢圓 的對(duì)稱軸為坐標(biāo)軸,一個(gè)焦點(diǎn)是,點(diǎn)在橢圓上.
(Ⅰ)求動(dòng)圓圓心的軌跡的方程及其橢圓的方程;
(Ⅱ)若動(dòng)直線與軌跡處的切線平行,且直線與橢圓交于兩點(diǎn),問(wèn):是否存在著這樣的直線使得的面積等于?如果存在,請(qǐng)求出直線的方程;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案