已知集合A={1,2,3,4},B={1,3},則CAB
 
考點:補集及其運算
專題:集合
分析:根據(jù)題意和補集的定義直接求出CAB即可.
解答: 解:因為集合A={1,2,3,4},B={1,3},
所以CAB={2,4},
故答案為:{2,4}.
點評:本題考查補集的運算,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤x<7},B={x|2<x<10}.
(1)求A∪B,(∁RA)∩B;
(2)已知C={x|x<a},若A∩C=∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C焦點在x軸上,短軸長為2,離心率是
3
2

(1)求橢圓C的方程;
(2)設(shè)直線AB與橢圓C交于AB兩點,直線AB的方程是y=x+1,求弦長|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實數(shù)x,y滿足方程x2+y2=4,求z=2x+y的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(-1,4)作圓x2+y2-4x-6y+12=0的切線,則切線長為( 。
A、3
B、
5
C、
10
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
a2
-
y2
3
=1(a>0)的離心率為2,則雙曲線的漸近線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體的高為4,則此正四面體的內(nèi)切球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

北京、張家港2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標配套活動的相關(guān)代言,決定對旗下的某商品進行一次評估.該商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了抓住申奧契機,擴大該商品的影響力,提高年銷售量.公司決定立即對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到x元.公司擬投入
1
6
(x2-600)
萬作為技改費用,投入50萬元作為固定宣傳費用,投入
x
5
萬元作為浮動宣傳費用.試問:當(dāng)該商品改革后的銷售量a至少應(yīng)達到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出函數(shù)f(x)=-x2+2x-3的單調(diào)遞增區(qū)間,并證明.

查看答案和解析>>

同步練習(xí)冊答案