【題目】如圖,圓C與x軸相切于點(diǎn)T(2,0),與y軸正半軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的下方),且|MN|=3.
(Ⅰ)求圓C的方程;
(Ⅱ)過點(diǎn)M任作一條直線與橢圓 相交于兩點(diǎn)A、B,連接AN、BN,求證:∠ANM=∠BNM.
【答案】解:(Ⅰ)設(shè)圓C的半徑為r(r>0),依題意,圓心坐標(biāo)為(2,r). ∵|MN|=3,∴ ,解得 ,
故圓C的方程為 .
(Ⅱ)把x=0代入方程 ,解得y=1或y=4,
即點(diǎn)M(0,1),N(0,4).
①當(dāng)AB⊥y軸時(shí),由橢圓的對(duì)稱性可知∠ANM=∠BNM.
②當(dāng)AB與y軸不垂直時(shí),可設(shè)直線AB的方程為y=kx+1.
聯(lián)立方程 ,消去y得,(1+2k2)x2+4kx﹣6=0.
設(shè)直線AB交橢圓Γ于A(x1 , y1)、B(x2 , y2)兩點(diǎn),
則 , .
∴ =0,
∴∠ANM=∠BNM.
綜上所述,∠ANM=∠BNM.
【解析】(Ⅰ)設(shè)圓C的半徑為r(r>0),依題意,圓心坐標(biāo)為(2,r),根據(jù)|MN|=3,利用弦長(zhǎng)公式求得r的值,可得圓C的方程.(Ⅱ)把x=0代入圓C的方程,求得M、N的坐標(biāo),當(dāng)AB⊥y軸時(shí),由橢圓的對(duì)稱性可知∠ANM=∠BNM,當(dāng)AB與y軸不垂直時(shí),可設(shè)直線AB的方程為y=kx+1,代入橢圓的方程,利用韋達(dá)定理求得KAB+KBN=0,可得∠ANM=∠BNM.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí),掌握?qǐng)A的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為,它的一個(gè)頂點(diǎn)為,離心率.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于, 兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,公差為d,且0<d<1,a5≠ (k∈Z),sin2a3+2sina5cosa5=sin2a7 , 函數(shù)f(x)=dsin(wx+4d)(w>0)滿足:在 上單調(diào)且存在 ,則w范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的函數(shù),其導(dǎo)函數(shù).
(1)如果函數(shù)在x=1處有極值試確定b、c的值;
(2)設(shè)當(dāng)時(shí),函數(shù)圖象上任一點(diǎn)P處的切線斜率為k,若,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列{an}中,a1=2, (n∈N*).
(1)證明數(shù)列 是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè) ,若數(shù)列{bn}的前n項(xiàng)和是Tn , 求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.若曲線C的極坐標(biāo)方程為ρcos2θ﹣4sinθ=0,P點(diǎn)的極坐標(biāo)為 ,在平面直角坐標(biāo)系中,直線l經(jīng)過點(diǎn)P,斜率為
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的參數(shù)方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點(diǎn),求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P-ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).
(1)求證:PA⊥BD;
(2)求證:平面BDE⊥平面PAC;
(3)當(dāng)PA∥平面BDE時(shí),求三棱錐E-BCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,AB=1,BC=,AA1=2,E是側(cè)棱BB1的中點(diǎn).
(1)求證:A1E⊥平面AED;
(2)求二面角A﹣A1D﹣E的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com