平面內(nèi)一動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積等于2.
(1)求△PF1F2周長(zhǎng)的最小值;
(2)求動(dòng)點(diǎn)P(x,y)的軌跡C方程,用y2=f(x)形式表示.
【答案】分析:(1)利用動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積等于2,可得△PF1F2周長(zhǎng)關(guān)系式,利用基本不等式,可求△PF1F2周長(zhǎng)的最小值;
(2)利用動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積等于2,建立方程,化簡(jiǎn)可得結(jié)論.
解答:解:(1)∵動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積等于2
∴△PF1F2周長(zhǎng)為|PF1|+|PF2|+|F1F2|=|PF1|++2≥2+2
當(dāng)且僅當(dāng)|PF1|=時(shí),取等號(hào),所以△PF1F2周長(zhǎng)的最小值為2+2;
(2)∵動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積等于2
∴|PF1||PF2|=2
×=2
化簡(jiǎn)y2=
點(diǎn)評(píng):本題考查軌跡方程,考查基本不等式的運(yùn)用,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知平面內(nèi)一動(dòng)點(diǎn)P到F(1,0)的距離比點(diǎn)P到y(tǒng)軸的距離大1.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線交軌跡C于A,B兩點(diǎn),交直線x=-1于M點(diǎn),且
MA
=λ1
AF
,
MB
=λ2
BF
,求λ12的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•奉賢區(qū)二模)平面內(nèi)一動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積等于1.
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C方程,用y2=f(x)形式表示;
(2)類(lèi)似高二第二學(xué)期教材(12.4橢圓的性質(zhì)、12.6雙曲線的性質(zhì)、12.8拋物線的性質(zhì))中研究曲線的方法請(qǐng)你研究軌跡C的性質(zhì),請(qǐng)直接寫(xiě)出答案;
(3)求△PF1F2周長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•奉賢區(qū)二模)平面內(nèi)一動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積等于2.
(1)求△PF1F2周長(zhǎng)的最小值;
(2)求動(dòng)點(diǎn)P(x,y)的軌跡C方程,用y2=f(x)形式表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年上海市奉賢區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

平面內(nèi)一動(dòng)點(diǎn)P(x,y)到兩定點(diǎn)F1(-1,0),F(xiàn)2(1,0)的距離之積等于1.
(1)求動(dòng)點(diǎn)P(x,y)的軌跡C方程,用y2=f(x)形式表示;
(2)類(lèi)似高二第二學(xué)期教材(12.4橢圓的性質(zhì)、12.6雙曲線的性質(zhì)、12.8拋物線的性質(zhì))中研究曲線的方法請(qǐng)你研究軌跡C的性質(zhì),請(qǐng)直接寫(xiě)出答案;
(3)求△PF1F2周長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案