(本小題16分)設(shè)雙曲線:的焦點(diǎn)為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L(zhǎng)1,L2上的動(dòng)點(diǎn),且2,求線段AB中點(diǎn)M的軌跡方程,并說(shuō)明軌跡是什么曲線。
(1)由已知雙曲線的離心率為2得:解得a2=1, ……2分
所以雙曲線的方程為, ……4分
所以漸近線L1,L2的方程為和=0 ……6分
(2)c2=a2+b2=4,得c=2 ,所以,
又2所以=10 ……8分
設(shè)A在L1上,B在L2上,設(shè)A(x1,,B(x2,-
所以即 ……10分
設(shè)AB的中點(diǎn)M的坐標(biāo)為(x,y),則x=,y=
所以x1+x2=2x , x1-x2=2y
所以整理得: ……14分
所以線段AB中點(diǎn)M的軌跡方程為:,軌跡是橢圓。 ……16分
解析試題分析:(1)由已知雙曲線的離心率為2得:解得a2=1, ……2分
所以雙曲線的方程為, ……4分
所以漸近線L1,L2的方程為和=0 ……6分
(2)c2=a2+b2=4,得c=2 ,所以,
又2所以=10 ……8分
設(shè)A在L1上,B在L2上,設(shè)A(x1,,B(x2,-
所以即 ……10分
設(shè)AB的中點(diǎn)M的坐標(biāo)為(x,y),則x=,y=
所以x1+x2=2x , x1-x2=2y
所以整理得: ……14分
所以線段AB中點(diǎn)M的軌跡方程為:,軌跡是橢圓。 ……16分
考點(diǎn):本題主要考查雙曲線的標(biāo)準(zhǔn)方程及幾何性質(zhì),軌跡方程的求法。
點(diǎn)評(píng):點(diǎn)評(píng):求曲線的軌跡方程是解析幾何的基本問(wèn)題,本題利用相關(guān)點(diǎn)法求軌跡方程,相關(guān)點(diǎn)法 根據(jù)相關(guān)點(diǎn)所滿足的方程,通過(guò)轉(zhuǎn)換而求動(dòng)點(diǎn)的軌跡方程.中檔題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:+=1(a>b>0)的一個(gè)焦點(diǎn)是F(1,0),且離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)經(jīng)過(guò)點(diǎn)F的直線交橢圓C于M,N兩點(diǎn),線段MN的垂直平分線交y軸于點(diǎn)P(0,y0),求y0的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某海域有、兩個(gè)島嶼,島在島正東4海里處。經(jīng)多年觀察研究發(fā)現(xiàn),某種魚(yú)群洄游的路線是曲線,曾有漁船在距島、島距離和為8海里處發(fā)現(xiàn)過(guò)魚(yú)群。以、所在直線為軸,的垂直平分線為軸建立平面直角坐標(biāo)系。
(1)求曲線的標(biāo)準(zhǔn)方程;(6分)
(2)某日,研究人員在、兩島同時(shí)用聲納探測(cè)儀發(fā)出不同頻率的探測(cè)信號(hào)(傳播速度相同),、兩島收到魚(yú)群在處反射信號(hào)的時(shí)間比為,問(wèn)你能否確定處的位置(即點(diǎn)的坐標(biāo))?(8分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)
已知橢圓的右焦點(diǎn)為F,上頂點(diǎn)為A,P為C上任一點(diǎn),MN是圓的一條直徑,若與AF平行且在y軸上的截距為的直線恰好與圓相切.
(Ⅰ)求橢圓的離心率;
(Ⅱ)若的最大值為49,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
( 本小題滿分12分)如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)在上,點(diǎn)在上,且滿足的軌跡為曲線。
求曲線的方程;
若過(guò)定點(diǎn)F(0,2)的直線交曲線于不同的兩點(diǎn)(點(diǎn)在點(diǎn)之間),且滿足,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)
已知拋物線與直線交于兩點(diǎn).
(Ⅰ)求弦的長(zhǎng)度;
(Ⅱ)若點(diǎn)在拋物線上,且的面積為,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
已知橢圓C:的上頂點(diǎn)坐標(biāo)為,離心率為.
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)P為橢圓上一點(diǎn),A為左頂點(diǎn),F(xiàn)為橢圓的右焦點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)已知中心在原點(diǎn)O,焦點(diǎn)在軸上的橢圓C的離心率為,點(diǎn)A,B分別是橢圓C的長(zhǎng)軸、短軸的端點(diǎn),點(diǎn)O到直線AB的距離為。
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)E(3,0),設(shè)點(diǎn)P、Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),滿足EP⊥EQ,
求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com