(本小題滿分10分)已知中心在原點O,焦點在軸上的橢圓C的離心率為,點A,B分別是橢圓C的長軸、短軸的端點,點O到直線AB的距離為。

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知點E(3,0),設(shè)點P、Q是橢圓C上的兩個動點,滿足EP⊥EQ,
的取值范圍.

(1);(2)。

解析試題分析:(1)由離心率 ,得
   ∴  ①     ∵原點O到直線AB的距離為
  ② ,   將①代入②,得,∴ 
則橢圓C的標(biāo)準(zhǔn)方程為
(2)∵   ∴    ∴ 
設(shè),則,即

∵ , ∴
的取值范圍為
考點:橢圓的標(biāo)準(zhǔn)方程;橢圓的簡單性質(zhì);數(shù)量積。
點評:解決第一問的關(guān)鍵是利用條件列出關(guān)于a,b,c之間的方程;第二問重點是數(shù)量積的應(yīng)用,二次函數(shù)的最值的應(yīng)用,考查計算能力,轉(zhuǎn)化思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題16分)設(shè)雙曲線:的焦點為F1,F2.離心率為2。
(1)求此雙曲線漸近線L1,L2的方程;
(2)若A,B分別為L1,L2上的動點,且2,求線段AB中點M的軌跡方程,并說明軌跡是什么曲線。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)設(shè)橢圓C1的左、右焦點分別是F1、F2,下頂點為A,線段OA的中點為B(O為坐標(biāo)原點),如圖.若拋物線C2軸的交點為B,且經(jīng)過F1,F(xiàn)2點.

(Ⅰ)求橢圓C1的方程;
(Ⅱ)設(shè)M(0,),N為拋物線C2上的一動點,過點N作拋物線C2的切線交橢圓C1于P、Q兩點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分9分)已知頂點在原點,焦點在軸上的拋物線過點
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)過點作直線交拋物線于兩點,使得恰好平分線段,求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,點到兩點的距離之和為4,設(shè)點的軌跡為,直線交于兩點。
(Ⅰ)寫出的方程;     (Ⅱ)若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已(12分)知橢圓的中心在坐標(biāo)原點,離心率為,一個焦點是F(0,1).
(Ⅰ)求橢圓方程;
(Ⅱ)直線過點F交橢圓于A、B兩點,且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若橢圓的離心率為,焦點在軸上,且長軸長為10,曲線上的點與橢圓的兩個焦點的距離之差的絕對值等于4.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求曲線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分) 已知均在橢圓上,直線分別過橢圓的左、右焦點當(dāng)時,有
(1)求橢圓的方程
(2)設(shè)是橢圓上的任一點,為圓的任一條直徑,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C:的左,右焦點分別為,過 的直線L與橢圓C相交 A,B于兩點,且直線L的傾斜角為,點到直線L的距離為 ,
(1)  求橢圓C的焦距.(2)如果求橢圓C的方程.(12分)

查看答案和解析>>

同步練習(xí)冊答案