如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑,C是底面圓周上異于A,B的任意一點,A1A=AB=2,
(Ⅰ)求證:BC⊥平面A1AC;
(Ⅱ)求三棱錐A1-ABC的體積的最大值。

(Ⅰ)證明:∵C是底面圓周上異于A,B的任意一點,
且AB是圓柱底面圓的直徑,
∴BC⊥AC,
∵AA1⊥平面ABC,BC平面ABC,
∴AA1⊥BC,
∵AA1∩AC=A,AA1平面AA1C,AC平面AA1C,
∴BC⊥平面AA1C。
(Ⅱ)解:設AC=x,
在Rt△ABC中,(0<x<2),
(0<x<2),
,
∵0<x<2,0<x2<4,
∴當x2=2,即時,
三棱錐A1-ABC的體積的最大值為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑,C是底面圓周上異于A、B的任=A意一點,A1A=AB=2.
(1)求證:BC⊥平面A1AC;
(2)求三棱錐A1-ABC的體積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年浙江省高二上學期10月月考數(shù)學卷 題型:解答題

(本題滿分8分)

如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑, C是底面圓周上異于A,B的任意一點,A1A= AB=2.

(Ⅰ)求證: BC⊥平面A1AC;

(Ⅱ)求三棱錐A1-ABC的體積的最大值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年山東省北校區(qū)高二上學期第一次月考數(shù)學卷 題型:解答題

(本題滿分8分)如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑, C是底面圓周上異于A,B的任意一點,A1A= AB=2.

(Ⅰ)求證: BC⊥平面A1AC;

(Ⅱ)求三棱錐A1-ABC的體積的最大值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:0119 期末題 題型:解答題

如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑,C是底面圓周上異于A、B的任意一點,AA1=AB=2。
(1)求證:平面A1BC⊥平面A1AC;
(2)求三棱錐A1-ABC的體積的最大值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分8分)

如圖,A1A是圓柱的母線,AB是圓柱底面圓的直徑, C是底面圓周上異于A,B的任意一點,

A1A=AB=2.

(Ⅰ)求證:BC⊥平面A1AC;

(Ⅱ)求三棱錐A1-ABC的體積的最大值.

查看答案和解析>>

同步練習冊答案