【題目】某學(xué)校組織高一、高二年級(jí)學(xué)生進(jìn)行了“紀(jì)念建國(guó)70周年”的知識(shí)競(jìng)賽.從這兩個(gè)年級(jí)各隨機(jī)抽取了40名學(xué)生,對(duì)其成績(jī)進(jìn)行分析,得到了高一年級(jí)成績(jī)的頻率分布直方圖和高二年級(jí)成績(jī)的頻數(shù)分布表.

成績(jī)分組

頻數(shù)

高二

1)若成績(jī)不低于80分為“達(dá)標(biāo)”,估計(jì)高一年級(jí)知識(shí)競(jìng)賽的達(dá)標(biāo)率;

2)在抽取的學(xué)生中,從成績(jī)?yōu)?/span>的學(xué)生中隨機(jī)選取2名學(xué)生,代表學(xué)校外出參加比賽,求這2名學(xué)生來(lái)自于同一年級(jí)的概率.

【答案】(1)0.85;(2)

【解析】

1)利用1減去的概率即可得到答案;

2)高一年級(jí)成績(jī)?yōu)?/span>的有人,記為,高二年級(jí)成績(jī)?yōu)?/span>的有2名,記為,然后利用列舉法即可.

1)高一年級(jí)知識(shí)競(jìng)賽的達(dá)標(biāo)率為.

2)高一年級(jí)成績(jī)?yōu)?/span>的有(名),記為,

高二年級(jí)成績(jī)?yōu)?/span>的有2名,記為.選取2名學(xué)生的所有可能為

,共15種;

其中2名學(xué)生來(lái)自于同一年級(jí)的有,共7.

所以這2名學(xué)生來(lái)自于同一年級(jí)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某運(yùn)動(dòng)制衣品牌為了成衣尺寸更精準(zhǔn),現(xiàn)選擇15名志愿者,對(duì)其身高和臂展進(jìn)行測(cè)量(單位:厘米),左圖為選取的15名志愿者身高與臂展的折線圖,右圖為身高與臂展所對(duì)應(yīng)的散點(diǎn)圖,并求得其回歸方程為,以下結(jié)論中不正確的為

A. 15名志愿者身高的極差小于臂展的極差

B. 15名志愿者身高和臂展成正相關(guān)關(guān)系,

C. 可估計(jì)身高為190厘米的人臂展大約為189.65厘米,

D. 身高相差10厘米的兩人臂展都相差11.6厘米,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某飼料廠原有陳糧10噸,又購(gòu)進(jìn)新糧x噸,現(xiàn)將糧食總庫(kù)存量的一半精加工為飼料.若被精加工的新糧最多可用噸,被精加工的陳糧最多可用y2噸,記,則函數(shù)的圖象為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點(diǎn)生活或配合其他民俗活動(dòng)的民間藝術(shù);蘊(yùn)含了極致的數(shù)學(xué)美和豐富的傳統(tǒng)文化信息,現(xiàn)有一幅剪紙的設(shè)計(jì)圖,其中的4個(gè)小圓均過(guò)正方形的中心,且內(nèi)切于正方形的兩鄰邊.若在正方形內(nèi)隨機(jī)取一點(diǎn),則該點(diǎn)取自黑色部分的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為0),過(guò)點(diǎn)的直線的參數(shù)方程為t為參數(shù)),直線與曲線C相交于AB兩點(diǎn).

)寫出曲線C的直角坐標(biāo)方程和直線的普通方程;

)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,且,

(1)證明:平面;

(2)在線段上,是否存在一點(diǎn),使得二面角的大小為?如果存在,求的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,軸上方的點(diǎn)在拋物線上,且,直線與拋物線交于,兩點(diǎn)(點(diǎn)不重合),設(shè)直線,的斜率分別為,.

(Ⅰ)求拋物線的方程;

(Ⅱ)當(dāng)時(shí),求證:直線恒過(guò)定點(diǎn)并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于函數(shù)

1的極小值點(diǎn);

2)函數(shù)有且只有1個(gè)零點(diǎn);

3恒成立;

4)設(shè)函數(shù),若存在區(qū)間,使上的值域是,則

上述說(shuō)法正確的序號(hào)為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐PABCD中,底面ABCD為直角梯形,ABCD,ABAD,PA⊥平面ABCD,E是棱PC上一點(diǎn).

1)證明:平面ADE⊥平面PAB.

2)若PE4EC,O為點(diǎn)E在平面PAB上的投影,,ABAP2CD2,求四棱錐PADEO的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案