【題目】經(jīng)研究發(fā)現(xiàn),學(xué)生的注意力隨著老師講課時(shí)間的變化而變化,講課開始時(shí),學(xué)生的興趣激增;中間有一段時(shí)間,學(xué)生的興趣保持較理想的狀態(tài),隨后學(xué)生的注意力開始分散.設(shè)f(t)表示學(xué)生注意力隨時(shí)間t(分鐘)的變化規(guī)律(f(t)越大,表明學(xué)生注意力越集中),經(jīng)過實(shí)驗(yàn)分析得知:f(t)= ,
(1)求出k的值,并指出講課開始后多少分鐘,學(xué)生的注意力最集中?能堅(jiān)持多久?
(2)一道數(shù)學(xué)難題,需要講解24分鐘,并且要求學(xué)生的注意力至少達(dá)到185,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目?
【答案】
(1)解:當(dāng)t=20時(shí),f(t)=240,
則有240=20k+400;
解得,k=﹣8;
當(dāng)0<t≤10時(shí),f(t)=﹣t2+26t+80是單調(diào)遞增的,且f(10)=240;
當(dāng)10<t≤20時(shí),f(t)=240;
當(dāng)20<t≤40時(shí),f(t)=﹣8t+400是單調(diào)遞減的,且f(20)=240;
故講課開始后10分鐘,學(xué)生的注意力最集中,能堅(jiān)持10分鐘
(2)解:由f(t)=﹣t2+26t+80=185解得,t=5或t=21(舍去);
由f(t)=﹣8t+400=185解得,t=26.875;
故學(xué)生的注意力至少達(dá)到185的時(shí)間有26.875﹣5=21.875<24;
故老師不能在學(xué)生達(dá)到所需的狀態(tài)下講授完這道題目
【解析】(1)由分段函數(shù)知,求出每一段上的最大值即可判斷;(2)解每一段上f(t)=185的解,從而得到時(shí)間段,從而求解.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2﹣2|x﹣a|.
(1)若函數(shù)y=f(x)為偶函數(shù),求a的值;
(2)若a= ,求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)a>0時(shí),若對(duì)任意的x∈(0,+∞),不等式f(x﹣1)≤2f(x)恒成立,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)在區(qū)間上的圖象,為了得到這個(gè)函數(shù)的圖象,只需將y=sinx的圖象
A. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變
B. 向左平移至個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變
C. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>,縱坐標(biāo)不變
D. 向左平移個(gè)長(zhǎng)度單位,再把所得各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?倍,縱坐標(biāo)不變
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題p:x>1, x>0,命題q:x∈R,x3>3x , 則下列命題為真命題的是( )
A.p∧q
B.p∨(¬q)
C.p∧(¬q)
D.(¬p)∧q
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵(lì)居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個(gè)合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價(jià)收費(fèi),超出的部分按議價(jià)收費(fèi)。為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,…,分成9組,制成了如圖所示的頻率分布直方圖。
(1)求直方圖中的值;
(2)設(shè)該市有60萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),并說明理由;
(3)若該市政府希望使82%的居民每月的用水量不超過標(biāo)準(zhǔn)(噸),估計(jì)的值,并說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公交公司分別推出支付寶和微信掃碼支付乘車活動(dòng),活動(dòng)設(shè)置了一段時(shí)間的推廣期,由于推廣期內(nèi)優(yōu)惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊(duì)統(tǒng)計(jì)了活動(dòng)剛推出一周內(nèi)每一天使用掃碼支付的人次,用x表示活動(dòng)推出的天數(shù),y表示每天使用掃碼支付的人次(單位:十人次),統(tǒng)計(jì)數(shù)據(jù)如表所示:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y | 6 | 11 | 21 | 34 | 66 | 101 | 196 |
根據(jù)以上數(shù)據(jù),繪制了散點(diǎn)圖.
(1)根據(jù)散點(diǎn)圖判斷,在推廣期內(nèi),與(,均為大于零的常數(shù))哪一個(gè)適宜作為掃碼支付的人次關(guān)于活動(dòng)推出天數(shù)的回歸方程類型?(給出判斷即可,不必說明理由);
(2)若y關(guān)于x的回歸方程不是線性的可通過換元方法把它化歸為線性回歸方程。例如:(a、b為常數(shù),e為自然對(duì)數(shù)的底數(shù)),可以兩邊同時(shí)取自然對(duì)數(shù),再令,先用最小二乘法求出與x的線性回歸方程,再得出y與x的回歸方程。根據(jù)(1)的判斷結(jié)果及表1中的數(shù)據(jù),求y關(guān)于x的回歸方程;
(3)由(2)中的歸方程預(yù)測(cè)活動(dòng)推出第12天使用掃碼支付的人次。
參考數(shù)據(jù):
66 | 1.54 | 2711 | 50.12 | 3.47 |
其中,參考公式:對(duì)于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)公式分別為: ,。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=0,an+1=an+2 +1
(1)求證數(shù)列{ }是等差數(shù)列,并求出an的通項(xiàng)公式;
(2)若bn= ,求數(shù)列的前n項(xiàng)的和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為, 傾斜角為的直線經(jīng)過橢圓的右焦點(diǎn)且與圓相切.
(1)求橢圓 的方程;
(2)若直線與圓相切于點(diǎn), 且交橢圓于兩點(diǎn),射線于橢圓交于點(diǎn),設(shè)的面積與的面積分別為.
①求的最大值; ②當(dāng)取得最大值時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】()已知三個(gè)點(diǎn),,,圓為的外接圓.
()求圓的方程.
()設(shè)直線,與圓交于,兩點(diǎn),且,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com