17.已知命題p:?x0∈(0,+∞),$sin{x_0}=\frac{e}{2}$(其中e為自然對數(shù)的底數(shù)),則¬p為?x∈(0,+∞),sinx≠$\frac{e}{2}$.

分析 直接利用特稱命題的否定是全稱命題寫出結果即可.

解答 解:因為特稱命題的否定是全稱命題,
所以,命題p:?x0∈(0,+∞),$sin{x_0}=\frac{e}{2}$(其中e為自然對數(shù)的底數(shù)),則¬p:?x∈(0,+∞),sinx≠$\frac{e}{2}$,
故答案為:?x∈(0,+∞),sinx≠$\frac{e}{2}$.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關系,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.某校1000名學生中,O型血有400人,A型血有250人,B型血有250人,AB型血有100人,為了研究血型與色弱的關系,要從中抽取一個容量為40的樣本,按照分層抽樣的方法抽取樣本,則O型血、A型血、B型血、AB型血的人要分別抽的人數(shù)為(  )
A.16、10、10、4B.14、10、10、6C.13、12、12、3D.15、8、8、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知a為常數(shù),函數(shù)f(x)=ax3-3ax2-(x-3)ex+1在(0,2)內(nèi)有兩個極值點,則實數(shù)a的取值范圍為(  )
A.$(-∞,\frac{e}{3})$B.$(\frac{e}{3},{e^2})$C.$(\frac{e}{3},\frac{e^2}{6})$D.$(\frac{e}{3},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=ex-e-x(x∈R,且e為自然對數(shù)的底數(shù)).
(1)判斷函數(shù)f(x)的單調(diào)性與奇偶性;
(2)是否存在實數(shù)t,使不等式f(x-t)+f(x2-t2)≥0對一切x∈R都成立?若存在,求出t;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足acosA=bcosB,那么△ABC的形狀一定是等腰或直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.△ABC,角A,B,C對應邊分別為a,b,c,已知條件p:$\frac{a}{cosA}$=$\frac{cosB}$,條件q:a=b,則p是q成立的(  )
A.充要條件B.充分不必要條件
C.必要不充分條件D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知實數(shù)x,y滿足方程(x-3)2+(y-3)2=6,求
(I)$\frac{y}{x}$的最大值與最小值;
(Ⅱ)$\sqrt{(x-2)^{2}+{y}^{2}}$的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=loga(x+1),g(x)=loga(4-2x),a>0且a≠1.
(1)求函數(shù)y=f(x)-g(x)的定義域;
(2)求使不等式f(x)>g(x)成立的實數(shù)x的取值范圍;
(3)求函數(shù)y=2f(x)-g(x)-f(1)的零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知cosx=$\frac{\sqrt{3}}{2}$,根據(jù)下列條件求角x:
(1)x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(2)x∈[0,2π];
(3)x∈R.

查看答案和解析>>

同步練習冊答案