分析:根據(jù)對(duì)數(shù)函數(shù)的真數(shù)大于0和正弦函數(shù)的性質(zhì),求出原函數(shù)的定義域,再根據(jù)復(fù)合函數(shù)的單調(diào)性、對(duì)數(shù)函數(shù)、正弦函數(shù)的單調(diào)性,求出原函數(shù)的單調(diào)增區(qū)間.
解答:解:設(shè)u=sinx-cosx=
sin(x-
),由u>0,
即sin(x-
)>0,解得,2kπ<x-
<π+2kπ(k∈z),
∴
+2kπ<x<
+2kπ,即函數(shù)的定義域是(
+2kπ,
+2kπ)(k∈z),
∵函數(shù)
y=logu在定義域內(nèi)是減函數(shù),∴原函數(shù)的單調(diào)增區(qū)間是u的減區(qū)間,
由
+2kπ≤x-
≤+2kπ得,
2kπ+≤x≤2kπ+,(k∈Z),
∵函數(shù)的定義域是(
+2kπ,
+2kπ)(k∈z),
∴所求的函數(shù)單調(diào)增區(qū)間是
[2kπ+,2kπ+],(k∈Z),
故選C.
點(diǎn)評(píng):本題是有關(guān)函數(shù)單調(diào)性的綜合題,涉及了復(fù)合函數(shù)的單調(diào)性、對(duì)數(shù)函數(shù)以及正弦函數(shù)的單調(diào)性,對(duì)于對(duì)數(shù)型復(fù)合函數(shù)需要先求出原函數(shù)的定義域,這是易錯(cuò)的地方.