【題目】如圖,A,B,C為函數(shù)的圖象上的三點,它們的橫坐標分別是t、t+2、t+4,其中t≥1,
.
(1)設(shè)△ABC的面積為S,求S=f(t);
(2)判斷函數(shù)S=f(t)的單調(diào)性;
(3)求S=f(t)的最大值.
【答案】(1) S=
(2) S=f(t)在是是減函數(shù)
(3) 最大值是f (1)=
【解析】
解:(1)A、B、C三點坐標分別為(t,t),(t+2,(t+2)),(t+4,(t+4)),由圖形,當妨令三點A,B,C在x軸上的垂足為E,F,N,則△ABC的面積為
SABC=S梯形ABFE+S梯形BCNF﹣S梯形ACNE
=﹣[t(t+2)]﹣[(t+2)(t+4))]+2[t(t+4))]
=[t(t+4)(t+2)]
即△ABC的面積為S=f(t) (t≥1)
(2)f(t) (t≥1)是復(fù)合函數(shù),其外層是一個遞增的函數(shù),t≥1時,內(nèi)層是一個遞減的函數(shù),故復(fù)合函數(shù)是一個減函數(shù),
(3)由(2)的結(jié)論知,函數(shù)在t=1時取到最大值,故三角形面積的最大值是
S=f(1)
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)若直角三角形兩直角邊長之和為12,求其周長的最小值;
(2)若三角形有一個內(nèi)角為,周長為定值,求面積的最大值;
(3)為了研究邊長滿足的三角形其面積是否存在最大值,現(xiàn)有解法如下:(其中, 三角形面積的海倫公式),
∴
,
而,,,則,
但是,其中等號成立的條件是,于是與矛盾,
所以,此三角形的面積不存在最大值.
以上解答是否正確?若不正確,請你給出正確的答案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程](10分)
在極坐標系中,圓C的極坐標方程為,若以極點O為原點,極軸為x軸的正半軸建立平面直角坐標系.
(1)求圓C的一個參數(shù)方程;
(2)在平面直角坐標系中,是圓C上的動點,試求的最大值,并求出此時點P的直角坐標.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①對于獨立性檢驗,的值越大,說明兩事件相關(guān)程度越大,②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和,③某中學(xué)有高一學(xué)生400人,高二學(xué)生300人,高三學(xué)生200人,學(xué)校團委欲用分層抽樣的方法抽取18名學(xué)生進行問卷調(diào)查,則高一學(xué)生被抽到的概率最大,④通過回歸直線= +及回歸系數(shù),可以精確反映變量的取值和變化趨勢,其中正確的個數(shù)是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在上海自貿(mào)區(qū)的利好刺激下,公司開拓國際市場,基本形成了市場規(guī)模;自2014年1月以來的第個月(2014年1月為第一個月)產(chǎn)品的內(nèi)銷量、出口量和銷售總量(銷售總量=內(nèi)銷量+出口量)分別為、和(單位:萬件),依據(jù)銷售統(tǒng)計數(shù)據(jù)發(fā)現(xiàn)形成如下營銷趨勢:,(其中,為常數(shù),),已知萬件,萬件,萬件.
(1)求,的值,并寫出與滿足的關(guān)系式;
(2)證明:逐月遞增且控制在2萬件內(nèi);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校辦工廠請了30名木工制作200把椅子和100張課桌.已知制作一張課桌與制作一把椅子的工時數(shù)之比為10:7,問30名工人如何分組(一組制作課桌,另一組制作椅子)能使任務(wù)完成最快?請利用二分法的知識解答.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,三棱錐中,平面平面,是邊長為4,的正三角形,是頂角 的等腰三角形,點為上的一動點.
(1)當時,求證:;
(2)當直線與平面所成角為時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是R上的奇函數(shù).
(1)若x∈[,],求f(x)的取值范圍
(2)若對任意的x1∈[1,,總存在x2∈[,]使得mlog2(﹣6x12+24x1﹣16)﹣f(x2)0(m>0)成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com