(本小題滿分14分)
已知函數(shù).
(Ⅰ)求的值;
(Ⅱ)若數(shù)列 ,
求數(shù)列的通項(xiàng)公式;
(Ⅲ)若數(shù)列滿足,是數(shù)列的前項(xiàng)和,是否存在正實(shí)數(shù),使不等式對(duì)于一切的恒成立?若存在,請(qǐng)求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

解:(1)=1;(2) (3).

解析試題分析:(1)由f(x)+f(1-x)= =1,能得到f()+f( )=1.由此規(guī)律求值即可
(2)由an=f(0)+f()+f()+…+f()+f(1)(n∈N*),知an=f(1)+f()+f()+…+f()+f(0)(n∈N*),由倒序相加法能得到an
(3)由bn=2n+1•an,知bn=(n+1)•2n,由Sn=2•21+3•22+4•23+…+(n+1)•2n,利用錯(cuò)位相減法能求出Sn=n•2n+1,要使得不等式knSn>4bn恒成立,即kn2-2n-2>0對(duì)于一切的n∈N*恒成立,由此能夠證明當(dāng)k>4時(shí),不等式knSn>bn對(duì)于一切的n∈N*恒成立.
解:(1)=+=+=1
(2)∵    ①
 ②
由(Ⅰ),知=1
∴①+②,得 
(3)∵,∴ 
,      ①
, ②
①-②得 
  要使得不等式恒成立,即對(duì)于一切的恒成立,
法一:對(duì)一切的恒成立,

是單調(diào)遞增的, ∴的最小值為
,  ∴.
法二:.  設(shè)
當(dāng)時(shí),由于對(duì)稱軸直線,且 ,而函數(shù) 是增函數(shù),    ∴不等式恒成立
即當(dāng)時(shí),不等式對(duì)于一切的恒成立
考點(diǎn):本試題主要考查了數(shù)列、不等式知識(shí),考查化歸與轉(zhuǎn)化、分類與整合的數(shù)學(xué)思想,培養(yǎng)學(xué)生的抽象概括能力、推理論證能力、運(yùn)算求解能力和創(chuàng)新意識(shí).
點(diǎn)評(píng):解題時(shí)要注意倒序相加法、錯(cuò)位相減法的靈活運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14分)某出版社新出版一本高考復(fù)習(xí)用書,該書的成本為5元/本,經(jīng)銷過(guò)程中每本書需付給代理商m元(1≤m≤3)的勞務(wù)費(fèi),且出版的書可全部銷售完. 經(jīng)出版社研究決定,新書投放市場(chǎng)后定價(jià)為元/本(9≤≤11),預(yù)計(jì)一年的銷售量為萬(wàn)本.
(1)求該出版社一年的利潤(rùn)(萬(wàn)元)與每本書的定價(jià)的函數(shù)關(guān)系式;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)
是否存在常數(shù),使得函數(shù)在閉區(qū)間上的最大值為1?若存在,求出對(duì)應(yīng)的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分13分)
⑴已知,求的值;
⑵已知,求的范圍.             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)
某市居民生活用水收費(fèi)標(biāo)準(zhǔn)如下:

用水量(噸)
 
每噸收費(fèi)標(biāo)準(zhǔn)(元)
 
不超過(guò)噸部分
 

 
超過(guò)噸不超過(guò)噸部分
 
3
 
超過(guò)噸部分
 

 
已知某用戶一月份用水量為噸,繳納的水費(fèi)為元;二月份用水量為噸,繳納的水費(fèi)為元.設(shè)某用戶月用水量為噸,交納的水費(fèi)為元.
(1)寫出關(guān)于的函數(shù)關(guān)系式;
(2)若某用戶希望三月份繳納的水費(fèi)不超過(guò)元,求該用戶三月份最多可以用多少噸水?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)
(1)化簡(jiǎn);
(2)已知,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)解不等式:  
(2)求值:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(14分)計(jì)算下列各式的值:
(1)設(shè),求的值;

3

 
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)求的最小正周期和單調(diào)遞增區(qū)間;
(2)將按向量平移后圖像關(guān)于原點(diǎn)對(duì)稱,求當(dāng)最小時(shí)的

查看答案和解析>>

同步練習(xí)冊(cè)答案